How did people program for Consoles with multiple CPUs? The Next CEO of Stack OverflowHow were analytics gathered on software built for retrocomputing platforms?Did Apple not originally allow anyone to develop software for the Macintosh?How did software engineers test their code in 19xx?Did any major corporation ever successfully sue Microsoft for intellectual property theft?Instruction set support for multiplication with a constantBack in the late 1980s, how was commercial software for 8-bit home computers developed?Why did some CPUs use two Read/Write lines, and others just one?
Text adventure game code
Too much space between section and text in a twocolumn document
I believe this to be a fraud - hired, then asked to cash check and send cash as Bitcoin
How did people program for Consoles with multiple CPUs?
How to write the block matrix in LaTex?
If I blow insulation everywhere in my attic except the door trap, will heat escape through it?
Only print output after finding pattern
How can I quit an app using Terminal?
Can the Reverse Gravity spell affect the Meteor Swarm spell?
WOW air has ceased operation, can I get my tickets refunded?
What is the difference between "behavior" and "behaviour"?
Was a professor correct to chastise me for writing "Prof. X" rather than "Professor X"?
Natural language into sentence logic
Why didn't Khan get resurrected in the Genesis Explosion?
What is the purpose of the Evocation wizard's Potent Cantrip feature?
Why did we only see the N-1 starfighters in one film?
Apart from "berlinern", do any other German dialects have a corresponding verb?
Unreliable Magic - Is it worth it?
Is it okay to store user locations?
Is it safe to use c_str() on a temporary string?
Anatomically Correct Strange Women In Ponds Distributing Swords
Trouble understanding the speech of overseas colleagues
When airplanes disconnect from a tanker during air to air refueling, why do they bank so sharply to the right?
What's the point of interval inversion?
How did people program for Consoles with multiple CPUs?
The Next CEO of Stack OverflowHow were analytics gathered on software built for retrocomputing platforms?Did Apple not originally allow anyone to develop software for the Macintosh?How did software engineers test their code in 19xx?Did any major corporation ever successfully sue Microsoft for intellectual property theft?Instruction set support for multiplication with a constantBack in the late 1980s, how was commercial software for 8-bit home computers developed?Why did some CPUs use two Read/Write lines, and others just one?
I'm specifically interested in the Sega Mega Drive/Genesis, which used a 68000 CPU, but also a Z80, mainly used to control the sound hardware and provide backward compatibility with the Master System.
There was also the Atari Jaguar, with it's Tom and Jerry RISC chips, the Sega Saturn, Featuring a total of eight processors, and probably a lot more.
When writing code (assuming ASM), how would these additional processors be used/accessed? Did one write regular 68000 code (even for sound) and the 68000 itself handled talking to the Z80? Did one need to write two different programs, one for each CPU? If yes, how did they communicate with each other? Or is memory mapping used, which would require a binary that has both 68000 and Z80 instructions in them, making sure that the Z80 code is in a specific memory region?
(This isn't about "regular" multi-processing, like on newer consoles with multi-core CPUs that are all the same. This is about consoles with a main CPU and specialized co-processors for e.g., Sound. Basically, the Sega Genesis, though I'm looking at building my own custom system, so I'm more interested in the basic principles.)
software-development cpu sega-genesis
New contributor
add a comment |
I'm specifically interested in the Sega Mega Drive/Genesis, which used a 68000 CPU, but also a Z80, mainly used to control the sound hardware and provide backward compatibility with the Master System.
There was also the Atari Jaguar, with it's Tom and Jerry RISC chips, the Sega Saturn, Featuring a total of eight processors, and probably a lot more.
When writing code (assuming ASM), how would these additional processors be used/accessed? Did one write regular 68000 code (even for sound) and the 68000 itself handled talking to the Z80? Did one need to write two different programs, one for each CPU? If yes, how did they communicate with each other? Or is memory mapping used, which would require a binary that has both 68000 and Z80 instructions in them, making sure that the Z80 code is in a specific memory region?
(This isn't about "regular" multi-processing, like on newer consoles with multi-core CPUs that are all the same. This is about consoles with a main CPU and specialized co-processors for e.g., Sound. Basically, the Sega Genesis, though I'm looking at building my own custom system, so I'm more interested in the basic principles.)
software-development cpu sega-genesis
New contributor
"CPU" probably isn't the best term here, though I'm not certain what the idiomatic one of the time is; while you could have a 68k and a Z80, it was also common to see more specialized support chips. The general concept is called asymmetric multiprocessing.
– chrylis
1 hour ago
add a comment |
I'm specifically interested in the Sega Mega Drive/Genesis, which used a 68000 CPU, but also a Z80, mainly used to control the sound hardware and provide backward compatibility with the Master System.
There was also the Atari Jaguar, with it's Tom and Jerry RISC chips, the Sega Saturn, Featuring a total of eight processors, and probably a lot more.
When writing code (assuming ASM), how would these additional processors be used/accessed? Did one write regular 68000 code (even for sound) and the 68000 itself handled talking to the Z80? Did one need to write two different programs, one for each CPU? If yes, how did they communicate with each other? Or is memory mapping used, which would require a binary that has both 68000 and Z80 instructions in them, making sure that the Z80 code is in a specific memory region?
(This isn't about "regular" multi-processing, like on newer consoles with multi-core CPUs that are all the same. This is about consoles with a main CPU and specialized co-processors for e.g., Sound. Basically, the Sega Genesis, though I'm looking at building my own custom system, so I'm more interested in the basic principles.)
software-development cpu sega-genesis
New contributor
I'm specifically interested in the Sega Mega Drive/Genesis, which used a 68000 CPU, but also a Z80, mainly used to control the sound hardware and provide backward compatibility with the Master System.
There was also the Atari Jaguar, with it's Tom and Jerry RISC chips, the Sega Saturn, Featuring a total of eight processors, and probably a lot more.
When writing code (assuming ASM), how would these additional processors be used/accessed? Did one write regular 68000 code (even for sound) and the 68000 itself handled talking to the Z80? Did one need to write two different programs, one for each CPU? If yes, how did they communicate with each other? Or is memory mapping used, which would require a binary that has both 68000 and Z80 instructions in them, making sure that the Z80 code is in a specific memory region?
(This isn't about "regular" multi-processing, like on newer consoles with multi-core CPUs that are all the same. This is about consoles with a main CPU and specialized co-processors for e.g., Sound. Basically, the Sega Genesis, though I'm looking at building my own custom system, so I'm more interested in the basic principles.)
software-development cpu sega-genesis
software-development cpu sega-genesis
New contributor
New contributor
New contributor
asked 3 hours ago
Michael Stum♦Michael Stum
1213
1213
New contributor
New contributor
"CPU" probably isn't the best term here, though I'm not certain what the idiomatic one of the time is; while you could have a 68k and a Z80, it was also common to see more specialized support chips. The general concept is called asymmetric multiprocessing.
– chrylis
1 hour ago
add a comment |
"CPU" probably isn't the best term here, though I'm not certain what the idiomatic one of the time is; while you could have a 68k and a Z80, it was also common to see more specialized support chips. The general concept is called asymmetric multiprocessing.
– chrylis
1 hour ago
"CPU" probably isn't the best term here, though I'm not certain what the idiomatic one of the time is; while you could have a 68k and a Z80, it was also common to see more specialized support chips. The general concept is called asymmetric multiprocessing.
– chrylis
1 hour ago
"CPU" probably isn't the best term here, though I'm not certain what the idiomatic one of the time is; while you could have a 68k and a Z80, it was also common to see more specialized support chips. The general concept is called asymmetric multiprocessing.
– chrylis
1 hour ago
add a comment |
1 Answer
1
active
oldest
votes
It varies machine to machine; at the simplest end is the Neo Geo — its 68000 and Z80 have completely independent buses. You write one program for the 68000 and one for the Z80 and a single pipe of communication joins the two: post a byte to the Z80 and it'll trigger an NMI; the Z80 can read the command byte from a certain port and write a response to another, the 68000 can poll for the response. Neo Geo also supplied a sample set of Z80 code so you could just treat it as an advanced sound generator and not worry about the implementation if you prefer.
The Mega Drive has a more complicated system of shared buses; the Z80 has some memory on a private bus but the cartridge bus is a shared resource and I think the Z80 can also share some RAM. In that system the VDP can also act as a bus master so in net it's the Z80 getting access to the shared resources only when nobody else is attempting an access, the 68000 having priority only when it doesn't chose to start a VDP transfer, and the VDP having top priority for those periods when the 68000 has command it to do something.
If you ever hear scratchy sampled audio in a Mega Drive game then it's likely to be the Z80 trying to stream from the cartridge but frequently losing out on access slots.
The Saturn is like a more advanced Mega Drive except that the main CPUs have caches that can also be configured as small local memory pools. So if you're careful you can mostly keep them off the shared bus, gaining a significant performance benefit — Virtua Fighter 2 manages to keep most of the data for each player local to a single CPU for most of a frame, the laziest PlayStation ports do nothing in particular and either end up only using a single CPU or effectively doing so as a result of collection.
The Jaguar is supposed to work similarly to the Saturn but, quelle surprise, Atari rushed it to market so there's a significant bug affecting the RISC CPU's accesses to RAM when performing certain types of jump. That's how it often ends up being treated as a machine with a 68000 central processor when really the 68000 was intended just to be an intelligent scheduler.
So: across these systems one generally writes a different program for each processor, and either nominates one as a coordinator or uses a series of ad hoc means of point-to-point communication.
If it sounds hard to get right, that's because it is — programmers much prefer systems like the original PlayStation with a single CPU that just goes quickly.
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "648"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Michael Stum♦ is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fretrocomputing.stackexchange.com%2fquestions%2f9458%2fhow-did-people-program-for-consoles-with-multiple-cpus%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
It varies machine to machine; at the simplest end is the Neo Geo — its 68000 and Z80 have completely independent buses. You write one program for the 68000 and one for the Z80 and a single pipe of communication joins the two: post a byte to the Z80 and it'll trigger an NMI; the Z80 can read the command byte from a certain port and write a response to another, the 68000 can poll for the response. Neo Geo also supplied a sample set of Z80 code so you could just treat it as an advanced sound generator and not worry about the implementation if you prefer.
The Mega Drive has a more complicated system of shared buses; the Z80 has some memory on a private bus but the cartridge bus is a shared resource and I think the Z80 can also share some RAM. In that system the VDP can also act as a bus master so in net it's the Z80 getting access to the shared resources only when nobody else is attempting an access, the 68000 having priority only when it doesn't chose to start a VDP transfer, and the VDP having top priority for those periods when the 68000 has command it to do something.
If you ever hear scratchy sampled audio in a Mega Drive game then it's likely to be the Z80 trying to stream from the cartridge but frequently losing out on access slots.
The Saturn is like a more advanced Mega Drive except that the main CPUs have caches that can also be configured as small local memory pools. So if you're careful you can mostly keep them off the shared bus, gaining a significant performance benefit — Virtua Fighter 2 manages to keep most of the data for each player local to a single CPU for most of a frame, the laziest PlayStation ports do nothing in particular and either end up only using a single CPU or effectively doing so as a result of collection.
The Jaguar is supposed to work similarly to the Saturn but, quelle surprise, Atari rushed it to market so there's a significant bug affecting the RISC CPU's accesses to RAM when performing certain types of jump. That's how it often ends up being treated as a machine with a 68000 central processor when really the 68000 was intended just to be an intelligent scheduler.
So: across these systems one generally writes a different program for each processor, and either nominates one as a coordinator or uses a series of ad hoc means of point-to-point communication.
If it sounds hard to get right, that's because it is — programmers much prefer systems like the original PlayStation with a single CPU that just goes quickly.
add a comment |
It varies machine to machine; at the simplest end is the Neo Geo — its 68000 and Z80 have completely independent buses. You write one program for the 68000 and one for the Z80 and a single pipe of communication joins the two: post a byte to the Z80 and it'll trigger an NMI; the Z80 can read the command byte from a certain port and write a response to another, the 68000 can poll for the response. Neo Geo also supplied a sample set of Z80 code so you could just treat it as an advanced sound generator and not worry about the implementation if you prefer.
The Mega Drive has a more complicated system of shared buses; the Z80 has some memory on a private bus but the cartridge bus is a shared resource and I think the Z80 can also share some RAM. In that system the VDP can also act as a bus master so in net it's the Z80 getting access to the shared resources only when nobody else is attempting an access, the 68000 having priority only when it doesn't chose to start a VDP transfer, and the VDP having top priority for those periods when the 68000 has command it to do something.
If you ever hear scratchy sampled audio in a Mega Drive game then it's likely to be the Z80 trying to stream from the cartridge but frequently losing out on access slots.
The Saturn is like a more advanced Mega Drive except that the main CPUs have caches that can also be configured as small local memory pools. So if you're careful you can mostly keep them off the shared bus, gaining a significant performance benefit — Virtua Fighter 2 manages to keep most of the data for each player local to a single CPU for most of a frame, the laziest PlayStation ports do nothing in particular and either end up only using a single CPU or effectively doing so as a result of collection.
The Jaguar is supposed to work similarly to the Saturn but, quelle surprise, Atari rushed it to market so there's a significant bug affecting the RISC CPU's accesses to RAM when performing certain types of jump. That's how it often ends up being treated as a machine with a 68000 central processor when really the 68000 was intended just to be an intelligent scheduler.
So: across these systems one generally writes a different program for each processor, and either nominates one as a coordinator or uses a series of ad hoc means of point-to-point communication.
If it sounds hard to get right, that's because it is — programmers much prefer systems like the original PlayStation with a single CPU that just goes quickly.
add a comment |
It varies machine to machine; at the simplest end is the Neo Geo — its 68000 and Z80 have completely independent buses. You write one program for the 68000 and one for the Z80 and a single pipe of communication joins the two: post a byte to the Z80 and it'll trigger an NMI; the Z80 can read the command byte from a certain port and write a response to another, the 68000 can poll for the response. Neo Geo also supplied a sample set of Z80 code so you could just treat it as an advanced sound generator and not worry about the implementation if you prefer.
The Mega Drive has a more complicated system of shared buses; the Z80 has some memory on a private bus but the cartridge bus is a shared resource and I think the Z80 can also share some RAM. In that system the VDP can also act as a bus master so in net it's the Z80 getting access to the shared resources only when nobody else is attempting an access, the 68000 having priority only when it doesn't chose to start a VDP transfer, and the VDP having top priority for those periods when the 68000 has command it to do something.
If you ever hear scratchy sampled audio in a Mega Drive game then it's likely to be the Z80 trying to stream from the cartridge but frequently losing out on access slots.
The Saturn is like a more advanced Mega Drive except that the main CPUs have caches that can also be configured as small local memory pools. So if you're careful you can mostly keep them off the shared bus, gaining a significant performance benefit — Virtua Fighter 2 manages to keep most of the data for each player local to a single CPU for most of a frame, the laziest PlayStation ports do nothing in particular and either end up only using a single CPU or effectively doing so as a result of collection.
The Jaguar is supposed to work similarly to the Saturn but, quelle surprise, Atari rushed it to market so there's a significant bug affecting the RISC CPU's accesses to RAM when performing certain types of jump. That's how it often ends up being treated as a machine with a 68000 central processor when really the 68000 was intended just to be an intelligent scheduler.
So: across these systems one generally writes a different program for each processor, and either nominates one as a coordinator or uses a series of ad hoc means of point-to-point communication.
If it sounds hard to get right, that's because it is — programmers much prefer systems like the original PlayStation with a single CPU that just goes quickly.
It varies machine to machine; at the simplest end is the Neo Geo — its 68000 and Z80 have completely independent buses. You write one program for the 68000 and one for the Z80 and a single pipe of communication joins the two: post a byte to the Z80 and it'll trigger an NMI; the Z80 can read the command byte from a certain port and write a response to another, the 68000 can poll for the response. Neo Geo also supplied a sample set of Z80 code so you could just treat it as an advanced sound generator and not worry about the implementation if you prefer.
The Mega Drive has a more complicated system of shared buses; the Z80 has some memory on a private bus but the cartridge bus is a shared resource and I think the Z80 can also share some RAM. In that system the VDP can also act as a bus master so in net it's the Z80 getting access to the shared resources only when nobody else is attempting an access, the 68000 having priority only when it doesn't chose to start a VDP transfer, and the VDP having top priority for those periods when the 68000 has command it to do something.
If you ever hear scratchy sampled audio in a Mega Drive game then it's likely to be the Z80 trying to stream from the cartridge but frequently losing out on access slots.
The Saturn is like a more advanced Mega Drive except that the main CPUs have caches that can also be configured as small local memory pools. So if you're careful you can mostly keep them off the shared bus, gaining a significant performance benefit — Virtua Fighter 2 manages to keep most of the data for each player local to a single CPU for most of a frame, the laziest PlayStation ports do nothing in particular and either end up only using a single CPU or effectively doing so as a result of collection.
The Jaguar is supposed to work similarly to the Saturn but, quelle surprise, Atari rushed it to market so there's a significant bug affecting the RISC CPU's accesses to RAM when performing certain types of jump. That's how it often ends up being treated as a machine with a 68000 central processor when really the 68000 was intended just to be an intelligent scheduler.
So: across these systems one generally writes a different program for each processor, and either nominates one as a coordinator or uses a series of ad hoc means of point-to-point communication.
If it sounds hard to get right, that's because it is — programmers much prefer systems like the original PlayStation with a single CPU that just goes quickly.
answered 3 hours ago
TommyTommy
15.6k14476
15.6k14476
add a comment |
add a comment |
Michael Stum♦ is a new contributor. Be nice, and check out our Code of Conduct.
Michael Stum♦ is a new contributor. Be nice, and check out our Code of Conduct.
Michael Stum♦ is a new contributor. Be nice, and check out our Code of Conduct.
Michael Stum♦ is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Retrocomputing Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fretrocomputing.stackexchange.com%2fquestions%2f9458%2fhow-did-people-program-for-consoles-with-multiple-cpus%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
"CPU" probably isn't the best term here, though I'm not certain what the idiomatic one of the time is; while you could have a 68k and a Z80, it was also common to see more specialized support chips. The general concept is called asymmetric multiprocessing.
– chrylis
1 hour ago