Why does the integral domain “being trapped between a finite field extension” implies that it is a field?Linear map $f:Vrightarrow V$ injective $Longleftrightarrow$ surjectiveDoes this morphism necessarily give rise to a finite extension of residue fields?Points lying over a closed point in a separable extension of the base field are rationnalWhat kind of points are there in a finite type $k$-scheme?Quotient of ring is flat gives an identity of idealsWhen is the tensor product of a separable field extension with itself a domain?Why is the residue field of a $k$-scheme an extension of $k$?An example of normalization of schemeFinite fiber property and integral extension.Characterize integral extension of rings by maximal idealsMaximal ideal of $K[x_1,cdots,x_n]$ such that the quotient field equals to $K$

Do Legal Documents Require Signing In Standard Pen Colors?

Would it be legal for a US State to ban exports of a natural resource?

Visiting the UK as unmarried couple

Difference between -| and |- in TikZ

In Star Trek IV, why did the Bounty go back to a time when whales are already rare?

Find last 3 digits of this monster number

MAXDOP Settings for SQL Server 2014

A social experiment. What is the worst that can happen?

Fly on a jet pack vs fly with a jet pack?

How will losing mobility of one hand affect my career as a programmer?

Engineer refusing to file/disclose patents

Did arcade monitors have same pixel aspect ratio as TV sets?

Is camera lens focus an exact point or a range?

THT: What is a squared annular “ring”?

Can I use my Chinese passport to enter China after I acquired another citizenship?

What linear sensor for a keyboard?

Greatest common substring

Is XSS in canonical link possible?

Using a siddur to Daven from in a seforim store

Some numbers are more equivalent than others

How do I implement a file system driver driver in Linux?

Longest common substring in linear time

Can I rely on this github repository files?

How do I repair my stair bannister?



Why does the integral domain “being trapped between a finite field extension” implies that it is a field?


Linear map $f:Vrightarrow V$ injective $Longleftrightarrow$ surjectiveDoes this morphism necessarily give rise to a finite extension of residue fields?Points lying over a closed point in a separable extension of the base field are rationnalWhat kind of points are there in a finite type $k$-scheme?Quotient of ring is flat gives an identity of idealsWhen is the tensor product of a separable field extension with itself a domain?Why is the residue field of a $k$-scheme an extension of $k$?An example of normalization of schemeFinite fiber property and integral extension.Characterize integral extension of rings by maximal idealsMaximal ideal of $K[x_1,cdots,x_n]$ such that the quotient field equals to $K$













2












$begingroup$


The following is an exercise from Qing Liu's Algebraic Geometry and Arithmetic Curves.




Exercise 1.2.



Let ϕ : A → B be a homomorphism of finitely generated algebras over a field. Show that the image of a closed point under Spec ϕ is a closed point.




The following is the solution from Cihan Bahran. http://www-users.math.umn.edu/~bahra004/alg-geo/liu-soln.pdf.




Write $k$ for the underlying field. Let’s parse the statement. A closed point in $operatornameSpec B$ means a maximal ideal $n$ of $B$. And $operatornameSpec(ϕ)(n) = ϕ^−1(n)$. So we want to show that $p := ϕ−1(n)$ is a maximal ideal in $A$. First of all, $p$ is definitely a prime ideal of $A$ and $ϕ$ descends to an injective $k$-algebra homomorphism $ψ : A/p to B/n$. But the map $k to B/n$ defines a finite field extension of $k$ by Corollary 1.12. So the integral domain $A/p$ is trapped between a finite field extension. Such domains are necessarily fields, thus $p$ is maximal in $A$.




In the second last sentence, the writer says that the integral domain $A/p$ is trapped between a finite field extension. I don't exactly know what it means, but I think it means that there are two injective ring homomorphisms $f:kto A/p$ and $g:A/pto B/n$ such that $gcirc f$ makes $B/n$ a finite field extension of $k$. But why does it imply that $A/p$ is a field?










share|cite|improve this question









$endgroup$
















    2












    $begingroup$


    The following is an exercise from Qing Liu's Algebraic Geometry and Arithmetic Curves.




    Exercise 1.2.



    Let ϕ : A → B be a homomorphism of finitely generated algebras over a field. Show that the image of a closed point under Spec ϕ is a closed point.




    The following is the solution from Cihan Bahran. http://www-users.math.umn.edu/~bahra004/alg-geo/liu-soln.pdf.




    Write $k$ for the underlying field. Let’s parse the statement. A closed point in $operatornameSpec B$ means a maximal ideal $n$ of $B$. And $operatornameSpec(ϕ)(n) = ϕ^−1(n)$. So we want to show that $p := ϕ−1(n)$ is a maximal ideal in $A$. First of all, $p$ is definitely a prime ideal of $A$ and $ϕ$ descends to an injective $k$-algebra homomorphism $ψ : A/p to B/n$. But the map $k to B/n$ defines a finite field extension of $k$ by Corollary 1.12. So the integral domain $A/p$ is trapped between a finite field extension. Such domains are necessarily fields, thus $p$ is maximal in $A$.




    In the second last sentence, the writer says that the integral domain $A/p$ is trapped between a finite field extension. I don't exactly know what it means, but I think it means that there are two injective ring homomorphisms $f:kto A/p$ and $g:A/pto B/n$ such that $gcirc f$ makes $B/n$ a finite field extension of $k$. But why does it imply that $A/p$ is a field?










    share|cite|improve this question









    $endgroup$














      2












      2








      2


      1



      $begingroup$


      The following is an exercise from Qing Liu's Algebraic Geometry and Arithmetic Curves.




      Exercise 1.2.



      Let ϕ : A → B be a homomorphism of finitely generated algebras over a field. Show that the image of a closed point under Spec ϕ is a closed point.




      The following is the solution from Cihan Bahran. http://www-users.math.umn.edu/~bahra004/alg-geo/liu-soln.pdf.




      Write $k$ for the underlying field. Let’s parse the statement. A closed point in $operatornameSpec B$ means a maximal ideal $n$ of $B$. And $operatornameSpec(ϕ)(n) = ϕ^−1(n)$. So we want to show that $p := ϕ−1(n)$ is a maximal ideal in $A$. First of all, $p$ is definitely a prime ideal of $A$ and $ϕ$ descends to an injective $k$-algebra homomorphism $ψ : A/p to B/n$. But the map $k to B/n$ defines a finite field extension of $k$ by Corollary 1.12. So the integral domain $A/p$ is trapped between a finite field extension. Such domains are necessarily fields, thus $p$ is maximal in $A$.




      In the second last sentence, the writer says that the integral domain $A/p$ is trapped between a finite field extension. I don't exactly know what it means, but I think it means that there are two injective ring homomorphisms $f:kto A/p$ and $g:A/pto B/n$ such that $gcirc f$ makes $B/n$ a finite field extension of $k$. But why does it imply that $A/p$ is a field?










      share|cite|improve this question









      $endgroup$




      The following is an exercise from Qing Liu's Algebraic Geometry and Arithmetic Curves.




      Exercise 1.2.



      Let ϕ : A → B be a homomorphism of finitely generated algebras over a field. Show that the image of a closed point under Spec ϕ is a closed point.




      The following is the solution from Cihan Bahran. http://www-users.math.umn.edu/~bahra004/alg-geo/liu-soln.pdf.




      Write $k$ for the underlying field. Let’s parse the statement. A closed point in $operatornameSpec B$ means a maximal ideal $n$ of $B$. And $operatornameSpec(ϕ)(n) = ϕ^−1(n)$. So we want to show that $p := ϕ−1(n)$ is a maximal ideal in $A$. First of all, $p$ is definitely a prime ideal of $A$ and $ϕ$ descends to an injective $k$-algebra homomorphism $ψ : A/p to B/n$. But the map $k to B/n$ defines a finite field extension of $k$ by Corollary 1.12. So the integral domain $A/p$ is trapped between a finite field extension. Such domains are necessarily fields, thus $p$ is maximal in $A$.




      In the second last sentence, the writer says that the integral domain $A/p$ is trapped between a finite field extension. I don't exactly know what it means, but I think it means that there are two injective ring homomorphisms $f:kto A/p$ and $g:A/pto B/n$ such that $gcirc f$ makes $B/n$ a finite field extension of $k$. But why does it imply that $A/p$ is a field?







      abstract-algebra algebraic-geometry commutative-algebra






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 1 hour ago









      zxcvzxcv

      1609




      1609




















          2 Answers
          2






          active

          oldest

          votes


















          2












          $begingroup$


          Theorem 1. Let $K$ be a field. Let $R$ and $L$ be two $K$-algebras such that $L$ is a finite-dimensional $K$-vector space and $R$ is an integral domain. Let $g : R to L$ be an injective $K$-linear map. Then, $R$ is a field.




          Proof of Theorem 1. Since the $K$-linear map $g : R to L$ is injective, we have $dim R leq dim L$, where "$dim$" refers to the dimension of a $K$-vector space. But $dim L < infty$, since $L$ is finite-dimensional. Hence, $dim R leq dim L < infty$; thus, $R$ is a finite-dimensional $K$-vector space. Therefore, any injective $K$-linear map $f : R to R$ is an isomorphism of $K$-vector spaces (according to a well-known fact from linear algebra).



          Now, let $a in R$ be nonzero. Let $M_a$ denote the map $R to R, r mapsto ar$. This map $M_a : R to R$ is $K$-linear and has kernel $0$ (because every $r in R$ satisfying $ar = 0$ must satisfy $r = 0$ (since $R$ is an integral domain and $a$ is nonzero)); thus, it is injective. Hence, it is an isomorphism of $K$-vector spaces (since any injective $K$-linear map $f : R to R$ is an isomorphism of $K$-vector spaces). Thus, it is surjective. Therefore, there exists some $s in R$ such that $M_aleft(sright) = 1$. Consider this $s$. Now, the definition of $M_a$ yields $M_aleft(sright) = as$, so that $as = M_aleft(sright) = 1$. In other words, $s$ is a (multiplicative) inverse of $a$. Hence, $a$ has an inverse.



          We have thus proven that every nonzero $a in R$ has an inverse. In other words, the ring $R$ is an integral domain. This proves Theorem 1. $blacksquare$



          In your situation, you should apply Theorem 1 to $K = k$, $R = A/p$, $L = B/n$ and $g = psi$.






          share|cite|improve this answer









          $endgroup$




















            1












            $begingroup$

            Suppose $F$ is any field, $E$ is a finite extension field of $F$, and $D$ is an integral domain such that



            $F subset D subset E; tag 1$



            since



            $[E:F] = n < infty, tag 2$



            every element of $D$ is algebraic over $F$; thus



            $0 ne d in D tag 3$



            satisfies some



            $p(x) in F[x]; tag 4$



            that is,



            $p(d) = 0; tag 5$



            we may write



            $p(x) = displaystyle sum_0^deg p p_j x^j, ; p_j in F; tag 6$



            then



            $displaystyle sum_0^deg p p_j d^j = p(d) = 0; tag 7$



            furthermore, we may assume $p(x)$ is of minimal degree of all polynomials in $F[x]$ satisfied by $d$. In this case, we must have



            $p_0 ne 0; tag 8$



            if not, then



            $p(x) = displaystyle sum_1^deg p p_jx^j = x sum_1^deg p p_j x^j - 1; tag 9$



            thus



            $d displaystyle sum_1^deg p p_j d^j - 1 = 0, tag10$



            and via (4) this forces



            $displaystyle sum_1^deg p p_j d^j - 1 = 0, tag11$



            since $D$ is an integral domain; but this asserts that $d$ satisfies the polynomial



            $displaystyle sum_1^deg p p_ x^j - 1 in F[x] tag12$



            of degree $deg p - 1$, which contradicts the minimality of the degree of $p(x)$; therefore (8) binds and we may write



            $displaystyle sum_1^deg pp_j d^j = -p_0, tag13$



            or



            $d left( -p_0^-1displaystyle sum_1^deg p p_j d^j- 1 right ) = 1, tag14$



            which shows that



            $d^-1 = -p_0^-1displaystyle sum_1^deg p p_j d^j- 1 in D; tag15$



            since every $0 ne d in D$ has in iverse in $D$ by (15), $D$ is indeed a field.






            share|cite|improve this answer









            $endgroup$












              Your Answer





              StackExchange.ifUsing("editor", function ()
              return StackExchange.using("mathjaxEditing", function ()
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              );
              );
              , "mathjax-editing");

              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "69"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );













              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3161381%2fwhy-does-the-integral-domain-being-trapped-between-a-finite-field-extension-im%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              2












              $begingroup$


              Theorem 1. Let $K$ be a field. Let $R$ and $L$ be two $K$-algebras such that $L$ is a finite-dimensional $K$-vector space and $R$ is an integral domain. Let $g : R to L$ be an injective $K$-linear map. Then, $R$ is a field.




              Proof of Theorem 1. Since the $K$-linear map $g : R to L$ is injective, we have $dim R leq dim L$, where "$dim$" refers to the dimension of a $K$-vector space. But $dim L < infty$, since $L$ is finite-dimensional. Hence, $dim R leq dim L < infty$; thus, $R$ is a finite-dimensional $K$-vector space. Therefore, any injective $K$-linear map $f : R to R$ is an isomorphism of $K$-vector spaces (according to a well-known fact from linear algebra).



              Now, let $a in R$ be nonzero. Let $M_a$ denote the map $R to R, r mapsto ar$. This map $M_a : R to R$ is $K$-linear and has kernel $0$ (because every $r in R$ satisfying $ar = 0$ must satisfy $r = 0$ (since $R$ is an integral domain and $a$ is nonzero)); thus, it is injective. Hence, it is an isomorphism of $K$-vector spaces (since any injective $K$-linear map $f : R to R$ is an isomorphism of $K$-vector spaces). Thus, it is surjective. Therefore, there exists some $s in R$ such that $M_aleft(sright) = 1$. Consider this $s$. Now, the definition of $M_a$ yields $M_aleft(sright) = as$, so that $as = M_aleft(sright) = 1$. In other words, $s$ is a (multiplicative) inverse of $a$. Hence, $a$ has an inverse.



              We have thus proven that every nonzero $a in R$ has an inverse. In other words, the ring $R$ is an integral domain. This proves Theorem 1. $blacksquare$



              In your situation, you should apply Theorem 1 to $K = k$, $R = A/p$, $L = B/n$ and $g = psi$.






              share|cite|improve this answer









              $endgroup$

















                2












                $begingroup$


                Theorem 1. Let $K$ be a field. Let $R$ and $L$ be two $K$-algebras such that $L$ is a finite-dimensional $K$-vector space and $R$ is an integral domain. Let $g : R to L$ be an injective $K$-linear map. Then, $R$ is a field.




                Proof of Theorem 1. Since the $K$-linear map $g : R to L$ is injective, we have $dim R leq dim L$, where "$dim$" refers to the dimension of a $K$-vector space. But $dim L < infty$, since $L$ is finite-dimensional. Hence, $dim R leq dim L < infty$; thus, $R$ is a finite-dimensional $K$-vector space. Therefore, any injective $K$-linear map $f : R to R$ is an isomorphism of $K$-vector spaces (according to a well-known fact from linear algebra).



                Now, let $a in R$ be nonzero. Let $M_a$ denote the map $R to R, r mapsto ar$. This map $M_a : R to R$ is $K$-linear and has kernel $0$ (because every $r in R$ satisfying $ar = 0$ must satisfy $r = 0$ (since $R$ is an integral domain and $a$ is nonzero)); thus, it is injective. Hence, it is an isomorphism of $K$-vector spaces (since any injective $K$-linear map $f : R to R$ is an isomorphism of $K$-vector spaces). Thus, it is surjective. Therefore, there exists some $s in R$ such that $M_aleft(sright) = 1$. Consider this $s$. Now, the definition of $M_a$ yields $M_aleft(sright) = as$, so that $as = M_aleft(sright) = 1$. In other words, $s$ is a (multiplicative) inverse of $a$. Hence, $a$ has an inverse.



                We have thus proven that every nonzero $a in R$ has an inverse. In other words, the ring $R$ is an integral domain. This proves Theorem 1. $blacksquare$



                In your situation, you should apply Theorem 1 to $K = k$, $R = A/p$, $L = B/n$ and $g = psi$.






                share|cite|improve this answer









                $endgroup$















                  2












                  2








                  2





                  $begingroup$


                  Theorem 1. Let $K$ be a field. Let $R$ and $L$ be two $K$-algebras such that $L$ is a finite-dimensional $K$-vector space and $R$ is an integral domain. Let $g : R to L$ be an injective $K$-linear map. Then, $R$ is a field.




                  Proof of Theorem 1. Since the $K$-linear map $g : R to L$ is injective, we have $dim R leq dim L$, where "$dim$" refers to the dimension of a $K$-vector space. But $dim L < infty$, since $L$ is finite-dimensional. Hence, $dim R leq dim L < infty$; thus, $R$ is a finite-dimensional $K$-vector space. Therefore, any injective $K$-linear map $f : R to R$ is an isomorphism of $K$-vector spaces (according to a well-known fact from linear algebra).



                  Now, let $a in R$ be nonzero. Let $M_a$ denote the map $R to R, r mapsto ar$. This map $M_a : R to R$ is $K$-linear and has kernel $0$ (because every $r in R$ satisfying $ar = 0$ must satisfy $r = 0$ (since $R$ is an integral domain and $a$ is nonzero)); thus, it is injective. Hence, it is an isomorphism of $K$-vector spaces (since any injective $K$-linear map $f : R to R$ is an isomorphism of $K$-vector spaces). Thus, it is surjective. Therefore, there exists some $s in R$ such that $M_aleft(sright) = 1$. Consider this $s$. Now, the definition of $M_a$ yields $M_aleft(sright) = as$, so that $as = M_aleft(sright) = 1$. In other words, $s$ is a (multiplicative) inverse of $a$. Hence, $a$ has an inverse.



                  We have thus proven that every nonzero $a in R$ has an inverse. In other words, the ring $R$ is an integral domain. This proves Theorem 1. $blacksquare$



                  In your situation, you should apply Theorem 1 to $K = k$, $R = A/p$, $L = B/n$ and $g = psi$.






                  share|cite|improve this answer









                  $endgroup$




                  Theorem 1. Let $K$ be a field. Let $R$ and $L$ be two $K$-algebras such that $L$ is a finite-dimensional $K$-vector space and $R$ is an integral domain. Let $g : R to L$ be an injective $K$-linear map. Then, $R$ is a field.




                  Proof of Theorem 1. Since the $K$-linear map $g : R to L$ is injective, we have $dim R leq dim L$, where "$dim$" refers to the dimension of a $K$-vector space. But $dim L < infty$, since $L$ is finite-dimensional. Hence, $dim R leq dim L < infty$; thus, $R$ is a finite-dimensional $K$-vector space. Therefore, any injective $K$-linear map $f : R to R$ is an isomorphism of $K$-vector spaces (according to a well-known fact from linear algebra).



                  Now, let $a in R$ be nonzero. Let $M_a$ denote the map $R to R, r mapsto ar$. This map $M_a : R to R$ is $K$-linear and has kernel $0$ (because every $r in R$ satisfying $ar = 0$ must satisfy $r = 0$ (since $R$ is an integral domain and $a$ is nonzero)); thus, it is injective. Hence, it is an isomorphism of $K$-vector spaces (since any injective $K$-linear map $f : R to R$ is an isomorphism of $K$-vector spaces). Thus, it is surjective. Therefore, there exists some $s in R$ such that $M_aleft(sright) = 1$. Consider this $s$. Now, the definition of $M_a$ yields $M_aleft(sright) = as$, so that $as = M_aleft(sright) = 1$. In other words, $s$ is a (multiplicative) inverse of $a$. Hence, $a$ has an inverse.



                  We have thus proven that every nonzero $a in R$ has an inverse. In other words, the ring $R$ is an integral domain. This proves Theorem 1. $blacksquare$



                  In your situation, you should apply Theorem 1 to $K = k$, $R = A/p$, $L = B/n$ and $g = psi$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 31 mins ago









                  darij grinbergdarij grinberg

                  11.2k33167




                  11.2k33167





















                      1












                      $begingroup$

                      Suppose $F$ is any field, $E$ is a finite extension field of $F$, and $D$ is an integral domain such that



                      $F subset D subset E; tag 1$



                      since



                      $[E:F] = n < infty, tag 2$



                      every element of $D$ is algebraic over $F$; thus



                      $0 ne d in D tag 3$



                      satisfies some



                      $p(x) in F[x]; tag 4$



                      that is,



                      $p(d) = 0; tag 5$



                      we may write



                      $p(x) = displaystyle sum_0^deg p p_j x^j, ; p_j in F; tag 6$



                      then



                      $displaystyle sum_0^deg p p_j d^j = p(d) = 0; tag 7$



                      furthermore, we may assume $p(x)$ is of minimal degree of all polynomials in $F[x]$ satisfied by $d$. In this case, we must have



                      $p_0 ne 0; tag 8$



                      if not, then



                      $p(x) = displaystyle sum_1^deg p p_jx^j = x sum_1^deg p p_j x^j - 1; tag 9$



                      thus



                      $d displaystyle sum_1^deg p p_j d^j - 1 = 0, tag10$



                      and via (4) this forces



                      $displaystyle sum_1^deg p p_j d^j - 1 = 0, tag11$



                      since $D$ is an integral domain; but this asserts that $d$ satisfies the polynomial



                      $displaystyle sum_1^deg p p_ x^j - 1 in F[x] tag12$



                      of degree $deg p - 1$, which contradicts the minimality of the degree of $p(x)$; therefore (8) binds and we may write



                      $displaystyle sum_1^deg pp_j d^j = -p_0, tag13$



                      or



                      $d left( -p_0^-1displaystyle sum_1^deg p p_j d^j- 1 right ) = 1, tag14$



                      which shows that



                      $d^-1 = -p_0^-1displaystyle sum_1^deg p p_j d^j- 1 in D; tag15$



                      since every $0 ne d in D$ has in iverse in $D$ by (15), $D$ is indeed a field.






                      share|cite|improve this answer









                      $endgroup$

















                        1












                        $begingroup$

                        Suppose $F$ is any field, $E$ is a finite extension field of $F$, and $D$ is an integral domain such that



                        $F subset D subset E; tag 1$



                        since



                        $[E:F] = n < infty, tag 2$



                        every element of $D$ is algebraic over $F$; thus



                        $0 ne d in D tag 3$



                        satisfies some



                        $p(x) in F[x]; tag 4$



                        that is,



                        $p(d) = 0; tag 5$



                        we may write



                        $p(x) = displaystyle sum_0^deg p p_j x^j, ; p_j in F; tag 6$



                        then



                        $displaystyle sum_0^deg p p_j d^j = p(d) = 0; tag 7$



                        furthermore, we may assume $p(x)$ is of minimal degree of all polynomials in $F[x]$ satisfied by $d$. In this case, we must have



                        $p_0 ne 0; tag 8$



                        if not, then



                        $p(x) = displaystyle sum_1^deg p p_jx^j = x sum_1^deg p p_j x^j - 1; tag 9$



                        thus



                        $d displaystyle sum_1^deg p p_j d^j - 1 = 0, tag10$



                        and via (4) this forces



                        $displaystyle sum_1^deg p p_j d^j - 1 = 0, tag11$



                        since $D$ is an integral domain; but this asserts that $d$ satisfies the polynomial



                        $displaystyle sum_1^deg p p_ x^j - 1 in F[x] tag12$



                        of degree $deg p - 1$, which contradicts the minimality of the degree of $p(x)$; therefore (8) binds and we may write



                        $displaystyle sum_1^deg pp_j d^j = -p_0, tag13$



                        or



                        $d left( -p_0^-1displaystyle sum_1^deg p p_j d^j- 1 right ) = 1, tag14$



                        which shows that



                        $d^-1 = -p_0^-1displaystyle sum_1^deg p p_j d^j- 1 in D; tag15$



                        since every $0 ne d in D$ has in iverse in $D$ by (15), $D$ is indeed a field.






                        share|cite|improve this answer









                        $endgroup$















                          1












                          1








                          1





                          $begingroup$

                          Suppose $F$ is any field, $E$ is a finite extension field of $F$, and $D$ is an integral domain such that



                          $F subset D subset E; tag 1$



                          since



                          $[E:F] = n < infty, tag 2$



                          every element of $D$ is algebraic over $F$; thus



                          $0 ne d in D tag 3$



                          satisfies some



                          $p(x) in F[x]; tag 4$



                          that is,



                          $p(d) = 0; tag 5$



                          we may write



                          $p(x) = displaystyle sum_0^deg p p_j x^j, ; p_j in F; tag 6$



                          then



                          $displaystyle sum_0^deg p p_j d^j = p(d) = 0; tag 7$



                          furthermore, we may assume $p(x)$ is of minimal degree of all polynomials in $F[x]$ satisfied by $d$. In this case, we must have



                          $p_0 ne 0; tag 8$



                          if not, then



                          $p(x) = displaystyle sum_1^deg p p_jx^j = x sum_1^deg p p_j x^j - 1; tag 9$



                          thus



                          $d displaystyle sum_1^deg p p_j d^j - 1 = 0, tag10$



                          and via (4) this forces



                          $displaystyle sum_1^deg p p_j d^j - 1 = 0, tag11$



                          since $D$ is an integral domain; but this asserts that $d$ satisfies the polynomial



                          $displaystyle sum_1^deg p p_ x^j - 1 in F[x] tag12$



                          of degree $deg p - 1$, which contradicts the minimality of the degree of $p(x)$; therefore (8) binds and we may write



                          $displaystyle sum_1^deg pp_j d^j = -p_0, tag13$



                          or



                          $d left( -p_0^-1displaystyle sum_1^deg p p_j d^j- 1 right ) = 1, tag14$



                          which shows that



                          $d^-1 = -p_0^-1displaystyle sum_1^deg p p_j d^j- 1 in D; tag15$



                          since every $0 ne d in D$ has in iverse in $D$ by (15), $D$ is indeed a field.






                          share|cite|improve this answer









                          $endgroup$



                          Suppose $F$ is any field, $E$ is a finite extension field of $F$, and $D$ is an integral domain such that



                          $F subset D subset E; tag 1$



                          since



                          $[E:F] = n < infty, tag 2$



                          every element of $D$ is algebraic over $F$; thus



                          $0 ne d in D tag 3$



                          satisfies some



                          $p(x) in F[x]; tag 4$



                          that is,



                          $p(d) = 0; tag 5$



                          we may write



                          $p(x) = displaystyle sum_0^deg p p_j x^j, ; p_j in F; tag 6$



                          then



                          $displaystyle sum_0^deg p p_j d^j = p(d) = 0; tag 7$



                          furthermore, we may assume $p(x)$ is of minimal degree of all polynomials in $F[x]$ satisfied by $d$. In this case, we must have



                          $p_0 ne 0; tag 8$



                          if not, then



                          $p(x) = displaystyle sum_1^deg p p_jx^j = x sum_1^deg p p_j x^j - 1; tag 9$



                          thus



                          $d displaystyle sum_1^deg p p_j d^j - 1 = 0, tag10$



                          and via (4) this forces



                          $displaystyle sum_1^deg p p_j d^j - 1 = 0, tag11$



                          since $D$ is an integral domain; but this asserts that $d$ satisfies the polynomial



                          $displaystyle sum_1^deg p p_ x^j - 1 in F[x] tag12$



                          of degree $deg p - 1$, which contradicts the minimality of the degree of $p(x)$; therefore (8) binds and we may write



                          $displaystyle sum_1^deg pp_j d^j = -p_0, tag13$



                          or



                          $d left( -p_0^-1displaystyle sum_1^deg p p_j d^j- 1 right ) = 1, tag14$



                          which shows that



                          $d^-1 = -p_0^-1displaystyle sum_1^deg p p_j d^j- 1 in D; tag15$



                          since every $0 ne d in D$ has in iverse in $D$ by (15), $D$ is indeed a field.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered 27 mins ago









                          Robert LewisRobert Lewis

                          48.3k23167




                          48.3k23167



























                              draft saved

                              draft discarded
















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3161381%2fwhy-does-the-integral-domain-being-trapped-between-a-finite-field-extension-im%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Reverse int within the 32-bit signed integer range: [−2^31, 2^31 − 1]Combining two 32-bit integers into one 64-bit integerDetermine if an int is within rangeLossy packing 32 bit integer to 16 bitComputing the square root of a 64-bit integerKeeping integer addition within boundsSafe multiplication of two 64-bit signed integersLeetcode 10: Regular Expression MatchingSigned integer-to-ascii x86_64 assembler macroReverse the digits of an Integer“Add two numbers given in reverse order from a linked list”

                              Category:Fedor von Bock Media in category "Fedor von Bock"Navigation menuUpload mediaISNI: 0000 0000 5511 3417VIAF ID: 24712551GND ID: 119294796Library of Congress authority ID: n96068363BnF ID: 12534305fSUDOC authorities ID: 034604189Open Library ID: OL338253ANKCR AUT ID: jn19990000869National Library of Israel ID: 000514068National Thesaurus for Author Names ID: 341574317ReasonatorScholiaStatistics

                              Kiel Indholdsfortegnelse Historie | Transport og færgeforbindelser | Sejlsport og anden sport | Kultur | Kendte personer fra Kiel | Noter | Litteratur | Eksterne henvisninger | Navigationsmenuwww.kiel.de54°19′31″N 10°8′26″Ø / 54.32528°N 10.14056°Ø / 54.32528; 10.14056Oberbürgermeister Dr. Ulf Kämpferwww.statistik-nord.deDen danske Stats StatistikKiels hjemmesiderrrWorldCat312794080n790547494030481-4