Question about the proof of Second Isomorphism TheoremIsomorphism theorem and proving $f:Gto G'$ onto, $K'triangleleft G'Rightarrow G/f^-1(K')cong G'/K'$Interpretation of Second isomorphism theoremQuestion about second Isomorphism TheoremNeed isomorphism theorem intuitionWhy $phi(H) cong H/ kerphi$ in the Second Isomorphism Theorem?Intuition behind the first isomorphism theoremIntuition about the first isomorphism theoremIntuition about the second isomorphism theoremFundamental Isomorphism TheoremFinding the kernel of $phi$ of applying the First Isomorphism Theorem

Should I stop contributing to retirement accounts?

Is a bound state a stationary state?

Aragorn's "guise" in the Orthanc Stone

How to explain what's wrong with this application of the chain rule?

Did arcade monitors have same pixel aspect ratio as TV sets?

Is this toilet slogan correct usage of the English language?

Character escape sequences for ">"

Closed-form expression for certain product

Count the occurrence of each unique word in the file

Is it better practice to read straight from sheet music rather than memorize it?

Is it possible to have a strip of cold climate in the middle of a planet?

Why is it that I can sometimes guess the next note?

Should I outline or discovery write my stories?

Why should universal income be universal?

What is this called? Old film camera viewer?

Biological Blimps: Propulsion

Creature in Shazam mid-credits scene?

Freedom of speech and where it applies

How do you respond to a colleague from another team when they're wrongly expecting that you'll help them?

If a character has darkvision, can they see through an area of nonmagical darkness filled with lightly obscuring gas?

Why do we read the Megillah by night and by day?

How should I respond when I lied about my education and the company finds out through background check?

Calculating Wattage for Resistor in High Frequency Application?

Approximating irrational number to rational number



Question about the proof of Second Isomorphism Theorem


Isomorphism theorem and proving $f:Gto G'$ onto, $K'triangleleft G'Rightarrow G/f^-1(K')cong G'/K'$Interpretation of Second isomorphism theoremQuestion about second Isomorphism TheoremNeed isomorphism theorem intuitionWhy $phi(H) cong H/ kerphi$ in the Second Isomorphism Theorem?Intuition behind the first isomorphism theoremIntuition about the first isomorphism theoremIntuition about the second isomorphism theoremFundamental Isomorphism TheoremFinding the kernel of $phi$ of applying the First Isomorphism Theorem













4












$begingroup$


The Second Isomorphism Theorem:
Let $H$ be a subgroup of a group $G$ and $N$ a normal subgroup of $G$. Then
$$H/(Hcap N)cong(HN)/N$$



There is the proof of Abstract Algebra Thomas by W. Judson:




Define a map $phi$ from $H$ to $HN/N$ by $Hmapsto hN$. The map $phi$ is onto, since any coset $hnN=hN$ is the image of $h$ in $H$. We also know that $phi$ is a homomorphism because
$$phi(hh')=hh'N=hNh'N=phi(h)phi(h')$$
By the First Isomorphism Theorem, the image of $phi$ is isomorphic to $H/kerphi$, that is
$$HN/N=phi(H)cong H/kerphi$$
Since
$$kerphi=hin H:hin N=Hcap N$$
$HN/N=phi(H)cong H/Hcap N$




My question:



Is it necessary to prove that the map $phi$ is onto? Can we only prove that $phi$ is well defined and the image of $phi$ is a subset of $HN/N$? And then we can use the First Isomorphism Theorem and continue the proof.



Thank you.










share|cite|improve this question









New contributor




NiaBie is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$
















    4












    $begingroup$


    The Second Isomorphism Theorem:
    Let $H$ be a subgroup of a group $G$ and $N$ a normal subgroup of $G$. Then
    $$H/(Hcap N)cong(HN)/N$$



    There is the proof of Abstract Algebra Thomas by W. Judson:




    Define a map $phi$ from $H$ to $HN/N$ by $Hmapsto hN$. The map $phi$ is onto, since any coset $hnN=hN$ is the image of $h$ in $H$. We also know that $phi$ is a homomorphism because
    $$phi(hh')=hh'N=hNh'N=phi(h)phi(h')$$
    By the First Isomorphism Theorem, the image of $phi$ is isomorphic to $H/kerphi$, that is
    $$HN/N=phi(H)cong H/kerphi$$
    Since
    $$kerphi=hin H:hin N=Hcap N$$
    $HN/N=phi(H)cong H/Hcap N$




    My question:



    Is it necessary to prove that the map $phi$ is onto? Can we only prove that $phi$ is well defined and the image of $phi$ is a subset of $HN/N$? And then we can use the First Isomorphism Theorem and continue the proof.



    Thank you.










    share|cite|improve this question









    New contributor




    NiaBie is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$














      4












      4








      4





      $begingroup$


      The Second Isomorphism Theorem:
      Let $H$ be a subgroup of a group $G$ and $N$ a normal subgroup of $G$. Then
      $$H/(Hcap N)cong(HN)/N$$



      There is the proof of Abstract Algebra Thomas by W. Judson:




      Define a map $phi$ from $H$ to $HN/N$ by $Hmapsto hN$. The map $phi$ is onto, since any coset $hnN=hN$ is the image of $h$ in $H$. We also know that $phi$ is a homomorphism because
      $$phi(hh')=hh'N=hNh'N=phi(h)phi(h')$$
      By the First Isomorphism Theorem, the image of $phi$ is isomorphic to $H/kerphi$, that is
      $$HN/N=phi(H)cong H/kerphi$$
      Since
      $$kerphi=hin H:hin N=Hcap N$$
      $HN/N=phi(H)cong H/Hcap N$




      My question:



      Is it necessary to prove that the map $phi$ is onto? Can we only prove that $phi$ is well defined and the image of $phi$ is a subset of $HN/N$? And then we can use the First Isomorphism Theorem and continue the proof.



      Thank you.










      share|cite|improve this question









      New contributor




      NiaBie is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      The Second Isomorphism Theorem:
      Let $H$ be a subgroup of a group $G$ and $N$ a normal subgroup of $G$. Then
      $$H/(Hcap N)cong(HN)/N$$



      There is the proof of Abstract Algebra Thomas by W. Judson:




      Define a map $phi$ from $H$ to $HN/N$ by $Hmapsto hN$. The map $phi$ is onto, since any coset $hnN=hN$ is the image of $h$ in $H$. We also know that $phi$ is a homomorphism because
      $$phi(hh')=hh'N=hNh'N=phi(h)phi(h')$$
      By the First Isomorphism Theorem, the image of $phi$ is isomorphic to $H/kerphi$, that is
      $$HN/N=phi(H)cong H/kerphi$$
      Since
      $$kerphi=hin H:hin N=Hcap N$$
      $HN/N=phi(H)cong H/Hcap N$




      My question:



      Is it necessary to prove that the map $phi$ is onto? Can we only prove that $phi$ is well defined and the image of $phi$ is a subset of $HN/N$? And then we can use the First Isomorphism Theorem and continue the proof.



      Thank you.







      abstract-algebra group-theory group-isomorphism group-homomorphism






      share|cite|improve this question









      New contributor




      NiaBie is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|cite|improve this question









      New contributor




      NiaBie is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|cite|improve this question




      share|cite|improve this question








      edited 4 hours ago









      Andrews

      1,2761421




      1,2761421






      New contributor




      NiaBie is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 5 hours ago









      NiaBieNiaBie

      232




      232




      New contributor




      NiaBie is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      NiaBie is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      NiaBie is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




















          1 Answer
          1






          active

          oldest

          votes


















          3












          $begingroup$

          The First Isomorphism Theorem states that if $varphi: G to G'$, then $mathrmim(varphi) cong G/mathrmker(varphi)$. If we do not know that your $phi$ is surjective, then the First Isomorphism Theorem only shows us that $H/H cap N cong mathrmim(phi) subseteq HN/N$, which does not finish the job.






          share|cite|improve this answer









          $endgroup$












            Your Answer





            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );






            NiaBie is a new contributor. Be nice, and check out our Code of Conduct.









            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3160013%2fquestion-about-the-proof-of-second-isomorphism-theorem%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            3












            $begingroup$

            The First Isomorphism Theorem states that if $varphi: G to G'$, then $mathrmim(varphi) cong G/mathrmker(varphi)$. If we do not know that your $phi$ is surjective, then the First Isomorphism Theorem only shows us that $H/H cap N cong mathrmim(phi) subseteq HN/N$, which does not finish the job.






            share|cite|improve this answer









            $endgroup$

















              3












              $begingroup$

              The First Isomorphism Theorem states that if $varphi: G to G'$, then $mathrmim(varphi) cong G/mathrmker(varphi)$. If we do not know that your $phi$ is surjective, then the First Isomorphism Theorem only shows us that $H/H cap N cong mathrmim(phi) subseteq HN/N$, which does not finish the job.






              share|cite|improve this answer









              $endgroup$















                3












                3








                3





                $begingroup$

                The First Isomorphism Theorem states that if $varphi: G to G'$, then $mathrmim(varphi) cong G/mathrmker(varphi)$. If we do not know that your $phi$ is surjective, then the First Isomorphism Theorem only shows us that $H/H cap N cong mathrmim(phi) subseteq HN/N$, which does not finish the job.






                share|cite|improve this answer









                $endgroup$



                The First Isomorphism Theorem states that if $varphi: G to G'$, then $mathrmim(varphi) cong G/mathrmker(varphi)$. If we do not know that your $phi$ is surjective, then the First Isomorphism Theorem only shows us that $H/H cap N cong mathrmim(phi) subseteq HN/N$, which does not finish the job.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 4 hours ago









                Joshua MundingerJoshua Mundinger

                2,7621028




                2,7621028




















                    NiaBie is a new contributor. Be nice, and check out our Code of Conduct.









                    draft saved

                    draft discarded


















                    NiaBie is a new contributor. Be nice, and check out our Code of Conduct.












                    NiaBie is a new contributor. Be nice, and check out our Code of Conduct.











                    NiaBie is a new contributor. Be nice, and check out our Code of Conduct.














                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3160013%2fquestion-about-the-proof-of-second-isomorphism-theorem%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Reverse int within the 32-bit signed integer range: [−2^31, 2^31 − 1]Combining two 32-bit integers into one 64-bit integerDetermine if an int is within rangeLossy packing 32 bit integer to 16 bitComputing the square root of a 64-bit integerKeeping integer addition within boundsSafe multiplication of two 64-bit signed integersLeetcode 10: Regular Expression MatchingSigned integer-to-ascii x86_64 assembler macroReverse the digits of an Integer“Add two numbers given in reverse order from a linked list”

                    Category:Fedor von Bock Media in category "Fedor von Bock"Navigation menuUpload mediaISNI: 0000 0000 5511 3417VIAF ID: 24712551GND ID: 119294796Library of Congress authority ID: n96068363BnF ID: 12534305fSUDOC authorities ID: 034604189Open Library ID: OL338253ANKCR AUT ID: jn19990000869National Library of Israel ID: 000514068National Thesaurus for Author Names ID: 341574317ReasonatorScholiaStatistics

                    Kiel Indholdsfortegnelse Historie | Transport og færgeforbindelser | Sejlsport og anden sport | Kultur | Kendte personer fra Kiel | Noter | Litteratur | Eksterne henvisninger | Navigationsmenuwww.kiel.de54°19′31″N 10°8′26″Ø / 54.32528°N 10.14056°Ø / 54.32528; 10.14056Oberbürgermeister Dr. Ulf Kämpferwww.statistik-nord.deDen danske Stats StatistikKiels hjemmesiderrrWorldCat312794080n790547494030481-4