Determinant is linear as a function of each of the rows of the matrix. Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Determinant after matrix change issueWhat is the origin of the determinant in linear algebra?The determinant function is the only one satisfying the conditionsIf a NxN matrix has two identical columns will its determinant be zero?Geometric interpretation of determinant when two rows are swappedDeterminant functionDeterminant and determinant function(explanation)How would I answer the following question about the determinant of a matrix?Determinant of a matrix and linear independence (explanation needed)Compute new matrix derterminant when only two rows change
Stars Make Stars
Should I call the interviewer directly, if HR aren't responding?
Is the address of a local variable a constexpr?
How do I keep my slimes from escaping their pens?
Why does Python start at index -1 when indexing a list from the end?
How to do this path/lattice with tikz
Letter Boxed validator
Why is "Consequences inflicted." not a sentence?
Can inflation occur in a positive-sum game currency system such as the Stack Exchange reputation system?
Why don't the Weasley twins use magic outside of school if the Trace can only find the location of spells cast?
Single word antonym of "flightless"
Is 1 ppb equal to 1 μg/kg?
Storing hydrofluoric acid before the invention of plastics
What LEGO pieces have "real-world" functionality?
What causes the vertical darker bands in my photo?
Sorting numerically
Bonus calculation: Am I making a mountain out of a molehill?
Why is "Captain Marvel" translated as male in Portugal?
Were Kohanim forbidden from serving in King David's army?
Is there a documented rationale why the House Ways and Means chairman can demand tax info?
How can players work together to take actions that are otherwise impossible?
Do you forfeit tax refunds/credits if you aren't required to and don't file by April 15?
How do I mention the quality of my school without bragging
What does the "x" in "x86" represent?
Determinant is linear as a function of each of the rows of the matrix.
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Determinant after matrix change issueWhat is the origin of the determinant in linear algebra?The determinant function is the only one satisfying the conditionsIf a NxN matrix has two identical columns will its determinant be zero?Geometric interpretation of determinant when two rows are swappedDeterminant functionDeterminant and determinant function(explanation)How would I answer the following question about the determinant of a matrix?Determinant of a matrix and linear independence (explanation needed)Compute new matrix derterminant when only two rows change
$begingroup$
Today I heard in a lecture (some video on YouTube) that the determinant is linear as a function of each of the rows of the matrix.
I am not able to understand the above statement. I know that determinant is a special function which assign to each $x$ in $mathbb K^n times n$ a scalar. This is the intuitive idea. And this map is not linear as well. One way to see this is to consider the fact that determinant of $cA$ is $c^ndet(A)$
Can someone please explain what did the person mean by saying that the determinant is linear as a function of each of the rows of matrix?
linear-algebra matrices determinant
$endgroup$
add a comment |
$begingroup$
Today I heard in a lecture (some video on YouTube) that the determinant is linear as a function of each of the rows of the matrix.
I am not able to understand the above statement. I know that determinant is a special function which assign to each $x$ in $mathbb K^n times n$ a scalar. This is the intuitive idea. And this map is not linear as well. One way to see this is to consider the fact that determinant of $cA$ is $c^ndet(A)$
Can someone please explain what did the person mean by saying that the determinant is linear as a function of each of the rows of matrix?
linear-algebra matrices determinant
$endgroup$
$begingroup$
I got it. It means that elementary row operations have a linear effect on determinant. Say $A=(r1,r2,...,r_n)$ is a matrix then det of $(r_1,..,cr_j +r_i,..,r_n)$ is nothing but determinant of $(r_1,..,cr_j,..,r_n)$ plus determinant of $(r_1,..,r_i,..,r_n)$.Am I right?
$endgroup$
– StammeringMathematician
1 hour ago
$begingroup$
Yes. The fact that is is linear in each row separately gives rise to the combinatorial formula for the determinant.
$endgroup$
– copper.hat
1 hour ago
add a comment |
$begingroup$
Today I heard in a lecture (some video on YouTube) that the determinant is linear as a function of each of the rows of the matrix.
I am not able to understand the above statement. I know that determinant is a special function which assign to each $x$ in $mathbb K^n times n$ a scalar. This is the intuitive idea. And this map is not linear as well. One way to see this is to consider the fact that determinant of $cA$ is $c^ndet(A)$
Can someone please explain what did the person mean by saying that the determinant is linear as a function of each of the rows of matrix?
linear-algebra matrices determinant
$endgroup$
Today I heard in a lecture (some video on YouTube) that the determinant is linear as a function of each of the rows of the matrix.
I am not able to understand the above statement. I know that determinant is a special function which assign to each $x$ in $mathbb K^n times n$ a scalar. This is the intuitive idea. And this map is not linear as well. One way to see this is to consider the fact that determinant of $cA$ is $c^ndet(A)$
Can someone please explain what did the person mean by saying that the determinant is linear as a function of each of the rows of matrix?
linear-algebra matrices determinant
linear-algebra matrices determinant
edited 1 hour ago
Rodrigo de Azevedo
13.2k41961
13.2k41961
asked 1 hour ago
StammeringMathematicianStammeringMathematician
2,8121324
2,8121324
$begingroup$
I got it. It means that elementary row operations have a linear effect on determinant. Say $A=(r1,r2,...,r_n)$ is a matrix then det of $(r_1,..,cr_j +r_i,..,r_n)$ is nothing but determinant of $(r_1,..,cr_j,..,r_n)$ plus determinant of $(r_1,..,r_i,..,r_n)$.Am I right?
$endgroup$
– StammeringMathematician
1 hour ago
$begingroup$
Yes. The fact that is is linear in each row separately gives rise to the combinatorial formula for the determinant.
$endgroup$
– copper.hat
1 hour ago
add a comment |
$begingroup$
I got it. It means that elementary row operations have a linear effect on determinant. Say $A=(r1,r2,...,r_n)$ is a matrix then det of $(r_1,..,cr_j +r_i,..,r_n)$ is nothing but determinant of $(r_1,..,cr_j,..,r_n)$ plus determinant of $(r_1,..,r_i,..,r_n)$.Am I right?
$endgroup$
– StammeringMathematician
1 hour ago
$begingroup$
Yes. The fact that is is linear in each row separately gives rise to the combinatorial formula for the determinant.
$endgroup$
– copper.hat
1 hour ago
$begingroup$
I got it. It means that elementary row operations have a linear effect on determinant. Say $A=(r1,r2,...,r_n)$ is a matrix then det of $(r_1,..,cr_j +r_i,..,r_n)$ is nothing but determinant of $(r_1,..,cr_j,..,r_n)$ plus determinant of $(r_1,..,r_i,..,r_n)$.Am I right?
$endgroup$
– StammeringMathematician
1 hour ago
$begingroup$
I got it. It means that elementary row operations have a linear effect on determinant. Say $A=(r1,r2,...,r_n)$ is a matrix then det of $(r_1,..,cr_j +r_i,..,r_n)$ is nothing but determinant of $(r_1,..,cr_j,..,r_n)$ plus determinant of $(r_1,..,r_i,..,r_n)$.Am I right?
$endgroup$
– StammeringMathematician
1 hour ago
$begingroup$
Yes. The fact that is is linear in each row separately gives rise to the combinatorial formula for the determinant.
$endgroup$
– copper.hat
1 hour ago
$begingroup$
Yes. The fact that is is linear in each row separately gives rise to the combinatorial formula for the determinant.
$endgroup$
– copper.hat
1 hour ago
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
If $r_1, ldots r_n$ are the rows of the matrix and $r_i = sa+tb$, where $s,t$ are scalars and $a,b$ are row vectors, then you have
$$detbeginpmatrixr_1 \ vdots \r_i \ vdots \ r_nendpmatrix = detbeginpmatrixr_1 \ vdots \ sa+tb \ vdots \ r_nendpmatrix = sdetbeginpmatrixr_1 \ vdots \ a \ vdots \ r_nendpmatrix + tdetbeginpmatrixr_1 \ vdots \ b \ vdots \ r_nendpmatrix$$
This holds for any row $i=1,ldots , n$. And similarly this also applies to columns.
$endgroup$
add a comment |
$begingroup$
Let $M$ be an $ntimes n$ matrix with rows $mathbfr_1,dots,mathbfr_n$. Then we may think of the determinant as a function of the rows
$$
det(M)=det(mathbfr_1,dots,mathbfr_n).
$$
To say that $det$ is a linear function of the rows means that if we scale a single row by $c$, the result is scaled by $c$; that is,
$$
det(mathbfr_1,dots,mathbfr_i-1,cmathbfr_i,mathbfr_i+1dotsmathbfr_n)=cdet(mathbfr_1,dots,mathbfr_n).
$$
Similarly if we fix all but one row (say the first), we obtain
$$
det(mathbfx+mathbfr_1,mathbfr_2,dots,mathbfr_n)=det(mathbfx,dots,mathbfr_n)+det(mathbfr_1,dots,mathbfr_n).
$$
Your mistake was that you scale all the rows at once; to be linear, you can only do things "one at a time"
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3189406%2fdeterminant-is-linear-as-a-function-of-each-of-the-rows-of-the-matrix%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If $r_1, ldots r_n$ are the rows of the matrix and $r_i = sa+tb$, where $s,t$ are scalars and $a,b$ are row vectors, then you have
$$detbeginpmatrixr_1 \ vdots \r_i \ vdots \ r_nendpmatrix = detbeginpmatrixr_1 \ vdots \ sa+tb \ vdots \ r_nendpmatrix = sdetbeginpmatrixr_1 \ vdots \ a \ vdots \ r_nendpmatrix + tdetbeginpmatrixr_1 \ vdots \ b \ vdots \ r_nendpmatrix$$
This holds for any row $i=1,ldots , n$. And similarly this also applies to columns.
$endgroup$
add a comment |
$begingroup$
If $r_1, ldots r_n$ are the rows of the matrix and $r_i = sa+tb$, where $s,t$ are scalars and $a,b$ are row vectors, then you have
$$detbeginpmatrixr_1 \ vdots \r_i \ vdots \ r_nendpmatrix = detbeginpmatrixr_1 \ vdots \ sa+tb \ vdots \ r_nendpmatrix = sdetbeginpmatrixr_1 \ vdots \ a \ vdots \ r_nendpmatrix + tdetbeginpmatrixr_1 \ vdots \ b \ vdots \ r_nendpmatrix$$
This holds for any row $i=1,ldots , n$. And similarly this also applies to columns.
$endgroup$
add a comment |
$begingroup$
If $r_1, ldots r_n$ are the rows of the matrix and $r_i = sa+tb$, where $s,t$ are scalars and $a,b$ are row vectors, then you have
$$detbeginpmatrixr_1 \ vdots \r_i \ vdots \ r_nendpmatrix = detbeginpmatrixr_1 \ vdots \ sa+tb \ vdots \ r_nendpmatrix = sdetbeginpmatrixr_1 \ vdots \ a \ vdots \ r_nendpmatrix + tdetbeginpmatrixr_1 \ vdots \ b \ vdots \ r_nendpmatrix$$
This holds for any row $i=1,ldots , n$. And similarly this also applies to columns.
$endgroup$
If $r_1, ldots r_n$ are the rows of the matrix and $r_i = sa+tb$, where $s,t$ are scalars and $a,b$ are row vectors, then you have
$$detbeginpmatrixr_1 \ vdots \r_i \ vdots \ r_nendpmatrix = detbeginpmatrixr_1 \ vdots \ sa+tb \ vdots \ r_nendpmatrix = sdetbeginpmatrixr_1 \ vdots \ a \ vdots \ r_nendpmatrix + tdetbeginpmatrixr_1 \ vdots \ b \ vdots \ r_nendpmatrix$$
This holds for any row $i=1,ldots , n$. And similarly this also applies to columns.
answered 1 hour ago
trancelocationtrancelocation
14.1k1829
14.1k1829
add a comment |
add a comment |
$begingroup$
Let $M$ be an $ntimes n$ matrix with rows $mathbfr_1,dots,mathbfr_n$. Then we may think of the determinant as a function of the rows
$$
det(M)=det(mathbfr_1,dots,mathbfr_n).
$$
To say that $det$ is a linear function of the rows means that if we scale a single row by $c$, the result is scaled by $c$; that is,
$$
det(mathbfr_1,dots,mathbfr_i-1,cmathbfr_i,mathbfr_i+1dotsmathbfr_n)=cdet(mathbfr_1,dots,mathbfr_n).
$$
Similarly if we fix all but one row (say the first), we obtain
$$
det(mathbfx+mathbfr_1,mathbfr_2,dots,mathbfr_n)=det(mathbfx,dots,mathbfr_n)+det(mathbfr_1,dots,mathbfr_n).
$$
Your mistake was that you scale all the rows at once; to be linear, you can only do things "one at a time"
$endgroup$
add a comment |
$begingroup$
Let $M$ be an $ntimes n$ matrix with rows $mathbfr_1,dots,mathbfr_n$. Then we may think of the determinant as a function of the rows
$$
det(M)=det(mathbfr_1,dots,mathbfr_n).
$$
To say that $det$ is a linear function of the rows means that if we scale a single row by $c$, the result is scaled by $c$; that is,
$$
det(mathbfr_1,dots,mathbfr_i-1,cmathbfr_i,mathbfr_i+1dotsmathbfr_n)=cdet(mathbfr_1,dots,mathbfr_n).
$$
Similarly if we fix all but one row (say the first), we obtain
$$
det(mathbfx+mathbfr_1,mathbfr_2,dots,mathbfr_n)=det(mathbfx,dots,mathbfr_n)+det(mathbfr_1,dots,mathbfr_n).
$$
Your mistake was that you scale all the rows at once; to be linear, you can only do things "one at a time"
$endgroup$
add a comment |
$begingroup$
Let $M$ be an $ntimes n$ matrix with rows $mathbfr_1,dots,mathbfr_n$. Then we may think of the determinant as a function of the rows
$$
det(M)=det(mathbfr_1,dots,mathbfr_n).
$$
To say that $det$ is a linear function of the rows means that if we scale a single row by $c$, the result is scaled by $c$; that is,
$$
det(mathbfr_1,dots,mathbfr_i-1,cmathbfr_i,mathbfr_i+1dotsmathbfr_n)=cdet(mathbfr_1,dots,mathbfr_n).
$$
Similarly if we fix all but one row (say the first), we obtain
$$
det(mathbfx+mathbfr_1,mathbfr_2,dots,mathbfr_n)=det(mathbfx,dots,mathbfr_n)+det(mathbfr_1,dots,mathbfr_n).
$$
Your mistake was that you scale all the rows at once; to be linear, you can only do things "one at a time"
$endgroup$
Let $M$ be an $ntimes n$ matrix with rows $mathbfr_1,dots,mathbfr_n$. Then we may think of the determinant as a function of the rows
$$
det(M)=det(mathbfr_1,dots,mathbfr_n).
$$
To say that $det$ is a linear function of the rows means that if we scale a single row by $c$, the result is scaled by $c$; that is,
$$
det(mathbfr_1,dots,mathbfr_i-1,cmathbfr_i,mathbfr_i+1dotsmathbfr_n)=cdet(mathbfr_1,dots,mathbfr_n).
$$
Similarly if we fix all but one row (say the first), we obtain
$$
det(mathbfx+mathbfr_1,mathbfr_2,dots,mathbfr_n)=det(mathbfx,dots,mathbfr_n)+det(mathbfr_1,dots,mathbfr_n).
$$
Your mistake was that you scale all the rows at once; to be linear, you can only do things "one at a time"
answered 1 hour ago
TomGrubbTomGrubb
11.2k11639
11.2k11639
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3189406%2fdeterminant-is-linear-as-a-function-of-each-of-the-rows-of-the-matrix%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
I got it. It means that elementary row operations have a linear effect on determinant. Say $A=(r1,r2,...,r_n)$ is a matrix then det of $(r_1,..,cr_j +r_i,..,r_n)$ is nothing but determinant of $(r_1,..,cr_j,..,r_n)$ plus determinant of $(r_1,..,r_i,..,r_n)$.Am I right?
$endgroup$
– StammeringMathematician
1 hour ago
$begingroup$
Yes. The fact that is is linear in each row separately gives rise to the combinatorial formula for the determinant.
$endgroup$
– copper.hat
1 hour ago