Finding the error in an argumentChain rule notation for function with two variablesThe multivariable chain rule and functions that depend on themselvesCalculate partial derivative $f'_x, f'_y, f'_z$ where $f(x, y, z) = x^fracyz$Simple Chain Rule for PartialsChain rule for partial derivativesQuestion regarding the proof of the directional derivativePartial derivative of a function w.r.t an argument that occurs multiple timesDerivative of function of matrices using the product ruleWhen to use Partial derivatives and chain rulePartial derivative with dependent variables

How many wives did king shaul have

Theorists sure want true answers to this!

Why do I get negative height?

ssTTsSTtRrriinInnnnNNNIiinngg

GFCI outlets - can they be repaired? Are they really needed at the end of a circuit?

How do conventional missiles fly?

How does a dynamic QR code work?

Is it "common practice in Fourier transform spectroscopy to multiply the measured interferogram by an apodizing function"? If so, why?

Why was the shrink from 8″ made only to 5.25″ and not smaller (4″ or less)

Sums of two squares in arithmetic progressions

How to find if SQL server backup is encrypted with TDE without restoring the backup

Using "tail" to follow a file without displaying the most recent lines

Avoiding the "not like other girls" trope?

Could the museum Saturn V's be refitted for one more flight?

How to remove border from elements in the last row?

How exploitable/balanced is this homebrew spell: Spell Permanency?

Does int main() need a declaration on C++?

How obscure is the use of 令 in 令和?

How to travel to Japan while expressing milk?

In Bayesian inference, why are some terms dropped from the posterior predictive?

What is an equivalently powerful replacement spell for the Yuan-Ti's Suggestion spell?

How to stretch the corners of this image so that it looks like a perfect rectangle?

Is it possible to create a QR code using text?

Fair gambler's ruin problem intuition



Finding the error in an argument


Chain rule notation for function with two variablesThe multivariable chain rule and functions that depend on themselvesCalculate partial derivative $f'_x, f'_y, f'_z$ where $f(x, y, z) = x^fracyz$Simple Chain Rule for PartialsChain rule for partial derivativesQuestion regarding the proof of the directional derivativePartial derivative of a function w.r.t an argument that occurs multiple timesDerivative of function of matrices using the product ruleWhen to use Partial derivatives and chain rulePartial derivative with dependent variables













4












$begingroup$


If $z=f(x,y)$ and $y=x^2$, then by the chain rule



$fracpartial zpartial x=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y$



Therefore



$2xfracpartial zpartial y=0$



and



$fracpartial zpartial y=0$



What is wrong with this argument?



I have a feeling that



1.) $x$ and $y$ do not have partial derivatives because they are single-variable, and



2.) $fracpartial zpartial y$ cannot be zero, because $y=x^2$ and therefore the derivative of any $y$ term exists.



How is my reasoning? I am pretty confused by this question.










share|cite|improve this question











$endgroup$











  • $begingroup$
    My first question for you is why do you think this line of reasoning is incorrect? Did someone tell you it wasn't right?
    $endgroup$
    – BSplitter
    3 hours ago







  • 1




    $begingroup$
    I also will note that if $2xfracpartial zpartial y =0$, then either $x=0$ or $fracpartial zpartial y =0$.
    $endgroup$
    – BSplitter
    3 hours ago










  • $begingroup$
    @BSplitter the problem itself poses this argument as incorrect, the object being to find out why
    $endgroup$
    – mathenthusiast
    3 hours ago















4












$begingroup$


If $z=f(x,y)$ and $y=x^2$, then by the chain rule



$fracpartial zpartial x=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y$



Therefore



$2xfracpartial zpartial y=0$



and



$fracpartial zpartial y=0$



What is wrong with this argument?



I have a feeling that



1.) $x$ and $y$ do not have partial derivatives because they are single-variable, and



2.) $fracpartial zpartial y$ cannot be zero, because $y=x^2$ and therefore the derivative of any $y$ term exists.



How is my reasoning? I am pretty confused by this question.










share|cite|improve this question











$endgroup$











  • $begingroup$
    My first question for you is why do you think this line of reasoning is incorrect? Did someone tell you it wasn't right?
    $endgroup$
    – BSplitter
    3 hours ago







  • 1




    $begingroup$
    I also will note that if $2xfracpartial zpartial y =0$, then either $x=0$ or $fracpartial zpartial y =0$.
    $endgroup$
    – BSplitter
    3 hours ago










  • $begingroup$
    @BSplitter the problem itself poses this argument as incorrect, the object being to find out why
    $endgroup$
    – mathenthusiast
    3 hours ago













4












4








4





$begingroup$


If $z=f(x,y)$ and $y=x^2$, then by the chain rule



$fracpartial zpartial x=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y$



Therefore



$2xfracpartial zpartial y=0$



and



$fracpartial zpartial y=0$



What is wrong with this argument?



I have a feeling that



1.) $x$ and $y$ do not have partial derivatives because they are single-variable, and



2.) $fracpartial zpartial y$ cannot be zero, because $y=x^2$ and therefore the derivative of any $y$ term exists.



How is my reasoning? I am pretty confused by this question.










share|cite|improve this question











$endgroup$




If $z=f(x,y)$ and $y=x^2$, then by the chain rule



$fracpartial zpartial x=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y$



Therefore



$2xfracpartial zpartial y=0$



and



$fracpartial zpartial y=0$



What is wrong with this argument?



I have a feeling that



1.) $x$ and $y$ do not have partial derivatives because they are single-variable, and



2.) $fracpartial zpartial y$ cannot be zero, because $y=x^2$ and therefore the derivative of any $y$ term exists.



How is my reasoning? I am pretty confused by this question.







calculus multivariable-calculus partial-derivative






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 3 hours ago







mathenthusiast

















asked 3 hours ago









mathenthusiastmathenthusiast

808




808











  • $begingroup$
    My first question for you is why do you think this line of reasoning is incorrect? Did someone tell you it wasn't right?
    $endgroup$
    – BSplitter
    3 hours ago







  • 1




    $begingroup$
    I also will note that if $2xfracpartial zpartial y =0$, then either $x=0$ or $fracpartial zpartial y =0$.
    $endgroup$
    – BSplitter
    3 hours ago










  • $begingroup$
    @BSplitter the problem itself poses this argument as incorrect, the object being to find out why
    $endgroup$
    – mathenthusiast
    3 hours ago
















  • $begingroup$
    My first question for you is why do you think this line of reasoning is incorrect? Did someone tell you it wasn't right?
    $endgroup$
    – BSplitter
    3 hours ago







  • 1




    $begingroup$
    I also will note that if $2xfracpartial zpartial y =0$, then either $x=0$ or $fracpartial zpartial y =0$.
    $endgroup$
    – BSplitter
    3 hours ago










  • $begingroup$
    @BSplitter the problem itself poses this argument as incorrect, the object being to find out why
    $endgroup$
    – mathenthusiast
    3 hours ago















$begingroup$
My first question for you is why do you think this line of reasoning is incorrect? Did someone tell you it wasn't right?
$endgroup$
– BSplitter
3 hours ago





$begingroup$
My first question for you is why do you think this line of reasoning is incorrect? Did someone tell you it wasn't right?
$endgroup$
– BSplitter
3 hours ago





1




1




$begingroup$
I also will note that if $2xfracpartial zpartial y =0$, then either $x=0$ or $fracpartial zpartial y =0$.
$endgroup$
– BSplitter
3 hours ago




$begingroup$
I also will note that if $2xfracpartial zpartial y =0$, then either $x=0$ or $fracpartial zpartial y =0$.
$endgroup$
– BSplitter
3 hours ago












$begingroup$
@BSplitter the problem itself poses this argument as incorrect, the object being to find out why
$endgroup$
– mathenthusiast
3 hours ago




$begingroup$
@BSplitter the problem itself poses this argument as incorrect, the object being to find out why
$endgroup$
– mathenthusiast
3 hours ago










1 Answer
1






active

oldest

votes


















5












$begingroup$

Nothing wrong. Just change it into



$$fracd zd x=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y$$



Note that that the first term is $fracd zd x$, which is different from $fracpartial zpartial x$. So they cannot cancel out. The partial derivatives do exist, but be careful not to mix it up with $fracd zd x$, which is NOT a partial derivative.



Actually, a better way to say this is that



$$left[fracpartial zpartial xright]_y=x^2=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y.$$



Where I have clearly written down the restriction $y=x^2$.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3172680%2ffinding-the-error-in-an-argument%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    5












    $begingroup$

    Nothing wrong. Just change it into



    $$fracd zd x=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y$$



    Note that that the first term is $fracd zd x$, which is different from $fracpartial zpartial x$. So they cannot cancel out. The partial derivatives do exist, but be careful not to mix it up with $fracd zd x$, which is NOT a partial derivative.



    Actually, a better way to say this is that



    $$left[fracpartial zpartial xright]_y=x^2=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y.$$



    Where I have clearly written down the restriction $y=x^2$.






    share|cite|improve this answer









    $endgroup$

















      5












      $begingroup$

      Nothing wrong. Just change it into



      $$fracd zd x=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y$$



      Note that that the first term is $fracd zd x$, which is different from $fracpartial zpartial x$. So they cannot cancel out. The partial derivatives do exist, but be careful not to mix it up with $fracd zd x$, which is NOT a partial derivative.



      Actually, a better way to say this is that



      $$left[fracpartial zpartial xright]_y=x^2=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y.$$



      Where I have clearly written down the restriction $y=x^2$.






      share|cite|improve this answer









      $endgroup$















        5












        5








        5





        $begingroup$

        Nothing wrong. Just change it into



        $$fracd zd x=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y$$



        Note that that the first term is $fracd zd x$, which is different from $fracpartial zpartial x$. So they cannot cancel out. The partial derivatives do exist, but be careful not to mix it up with $fracd zd x$, which is NOT a partial derivative.



        Actually, a better way to say this is that



        $$left[fracpartial zpartial xright]_y=x^2=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y.$$



        Where I have clearly written down the restriction $y=x^2$.






        share|cite|improve this answer









        $endgroup$



        Nothing wrong. Just change it into



        $$fracd zd x=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y$$



        Note that that the first term is $fracd zd x$, which is different from $fracpartial zpartial x$. So they cannot cancel out. The partial derivatives do exist, but be careful not to mix it up with $fracd zd x$, which is NOT a partial derivative.



        Actually, a better way to say this is that



        $$left[fracpartial zpartial xright]_y=x^2=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y.$$



        Where I have clearly written down the restriction $y=x^2$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 3 hours ago









        Holding ArthurHolding Arthur

        1,370417




        1,370417



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3172680%2ffinding-the-error-in-an-argument%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Reverse int within the 32-bit signed integer range: [−2^31, 2^31 − 1]Combining two 32-bit integers into one 64-bit integerDetermine if an int is within rangeLossy packing 32 bit integer to 16 bitComputing the square root of a 64-bit integerKeeping integer addition within boundsSafe multiplication of two 64-bit signed integersLeetcode 10: Regular Expression MatchingSigned integer-to-ascii x86_64 assembler macroReverse the digits of an Integer“Add two numbers given in reverse order from a linked list”

            Category:Fedor von Bock Media in category "Fedor von Bock"Navigation menuUpload mediaISNI: 0000 0000 5511 3417VIAF ID: 24712551GND ID: 119294796Library of Congress authority ID: n96068363BnF ID: 12534305fSUDOC authorities ID: 034604189Open Library ID: OL338253ANKCR AUT ID: jn19990000869National Library of Israel ID: 000514068National Thesaurus for Author Names ID: 341574317ReasonatorScholiaStatistics

            Kiel Indholdsfortegnelse Historie | Transport og færgeforbindelser | Sejlsport og anden sport | Kultur | Kendte personer fra Kiel | Noter | Litteratur | Eksterne henvisninger | Navigationsmenuwww.kiel.de54°19′31″N 10°8′26″Ø / 54.32528°N 10.14056°Ø / 54.32528; 10.14056Oberbürgermeister Dr. Ulf Kämpferwww.statistik-nord.deDen danske Stats StatistikKiels hjemmesiderrrWorldCat312794080n790547494030481-4