How to Prove P(a) → ∀x(P(x) ∨ ¬(x = a)) using Natural DeductionUsing natural deduction rules give a formal proofIntroductory Natural Deduction QuestionProve A ∨ D from A ∨ (B ∧ C) and (¬ B ∨ ¬ C) ∨ D ( LPL Q6.26) without using --> or material implicationGiven P ∨ ¬ P prove (P → Q) → ((¬ P → Q) → Q) by natural deductionHow to prove ¬(p→q) ⊢ p &¬qDoes anyone have a proof checker they prefer using for modal logic?How do you prove law of excluded middle using tertium non datur?How to prove : (( P → Q ) ∨ ( Q → R )) by natural deductionHow to prove ‘∃xP(x)’ from ‘¬∀x(P(x)→Q(x))’How would i go about using natural deduction to prove this argument is valid?

Sums of two squares in arithmetic progressions

Unlock My Phone! February 2018

Does the Idaho Potato Commission associate potato skins with healthy eating?

My ex-girlfriend uses my Apple ID to log in to her iPad. Do I have to give her my Apple ID password to reset it?

Could the museum Saturn V's be refitted for one more flight?

files created then deleted at every second in tmp directory

How badly should I try to prevent a user from XSSing themselves?

Different meanings of こわい

Is it possible to map the firing of neurons in the human brain so as to stimulate artificial memories in someone else?

What's the meaning of "Sollensaussagen"?

What does the same-ish mean?

Mathematica command that allows it to read my intentions

Rotate ASCII Art by 45 Degrees

How do I exit BASH while loop using modulus operator?

Why are UK visa biometrics appointments suspended at USCIS Application Support Centers?

Why is the sentence "Das ist eine Nase" correct?

What is the most common color to indicate the input-field is disabled?

What is the opposite of "eschatology"?

How can saying a song's name be a copyright violation?

Are British MPs missing the point, with these 'Indicative Votes'?

Partial fraction expansion confusion

How do conventional missiles fly?

how do we prove that a sum of two periods is still a period?

If a warlock makes a Dancing Sword their pact weapon, is there a way to prevent it from disappearing if it's farther away for more than a minute?



How to Prove P(a) → ∀x(P(x) ∨ ¬(x = a)) using Natural Deduction


Using natural deduction rules give a formal proofIntroductory Natural Deduction QuestionProve A ∨ D from A ∨ (B ∧ C) and (¬ B ∨ ¬ C) ∨ D ( LPL Q6.26) without using --> or material implicationGiven P ∨ ¬ P prove (P → Q) → ((¬ P → Q) → Q) by natural deductionHow to prove ¬(p→q) ⊢ p &¬qDoes anyone have a proof checker they prefer using for modal logic?How do you prove law of excluded middle using tertium non datur?How to prove : (( P → Q ) ∨ ( Q → R )) by natural deductionHow to prove ‘∃xP(x)’ from ‘¬∀x(P(x)→Q(x))’How would i go about using natural deduction to prove this argument is valid?













3















How would a formal Fitch proof look like.
I am given P(a) → ∀x(P(x) ∨ ¬(x = a)) to prove using Natural Deduction of predicate logic.
I am confused on how to proceed with the proof.
Please advice me on how to go about with this.



Thanks in advance










share|improve this question







New contributor




Moey mnm is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
























    3















    How would a formal Fitch proof look like.
    I am given P(a) → ∀x(P(x) ∨ ¬(x = a)) to prove using Natural Deduction of predicate logic.
    I am confused on how to proceed with the proof.
    Please advice me on how to go about with this.



    Thanks in advance










    share|improve this question







    New contributor




    Moey mnm is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.






















      3












      3








      3








      How would a formal Fitch proof look like.
      I am given P(a) → ∀x(P(x) ∨ ¬(x = a)) to prove using Natural Deduction of predicate logic.
      I am confused on how to proceed with the proof.
      Please advice me on how to go about with this.



      Thanks in advance










      share|improve this question







      New contributor




      Moey mnm is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.












      How would a formal Fitch proof look like.
      I am given P(a) → ∀x(P(x) ∨ ¬(x = a)) to prove using Natural Deduction of predicate logic.
      I am confused on how to proceed with the proof.
      Please advice me on how to go about with this.



      Thanks in advance







      logic proof fitch quantification






      share|improve this question







      New contributor




      Moey mnm is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|improve this question







      New contributor




      Moey mnm is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|improve this question




      share|improve this question






      New contributor




      Moey mnm is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 2 hours ago









      Moey mnmMoey mnm

      16




      16




      New contributor




      Moey mnm is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      Moey mnm is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      Moey mnm is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




















          1 Answer
          1






          active

          oldest

          votes


















          2














          HINT: I'll sketch the derivation. Since the theorem is a conditional, try using conditional proof/conditional-introduction by assuming P(a) and trying to derive ∀x(P(x) ∨ ¬(x = a)) from it. Here, to derive it, I would try an indirect proof by assuming the negation ¬∀x(P(x) ∨ ¬(x = a)) and trying to derive a contradiction. Use quantifier equivalence rules to get ∃x¬(P(x) ∨ ¬(x = a)).



          The next steps will be a little different depending on your list of rules (quantifier rules typically come with restrictions to ensure the rules are sound, and different texts will use different restrictions). Roughly, we can let y be stand for the particular such that ¬(P(y) ∨ ¬(y = a)). Apply De Morgan's law to get ¬P(y) ∧ (y = a). Since y = a, it must be that ¬P(a), contradicting our assumption that P(a). Hence our contradiction completing the indirect proof of ∀x(P(x) ∨ ¬(x = a)).



          Hope this helps!






          share|improve this answer























            Your Answer








            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "265"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );






            Moey mnm is a new contributor. Be nice, and check out our Code of Conduct.









            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphilosophy.stackexchange.com%2fquestions%2f61580%2fhow-to-prove-pa-%25e2%2586%2592-%25e2%2588%2580xpx-%25e2%2588%25a8-%25c2%25acx-a-using-natural-deduction%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2














            HINT: I'll sketch the derivation. Since the theorem is a conditional, try using conditional proof/conditional-introduction by assuming P(a) and trying to derive ∀x(P(x) ∨ ¬(x = a)) from it. Here, to derive it, I would try an indirect proof by assuming the negation ¬∀x(P(x) ∨ ¬(x = a)) and trying to derive a contradiction. Use quantifier equivalence rules to get ∃x¬(P(x) ∨ ¬(x = a)).



            The next steps will be a little different depending on your list of rules (quantifier rules typically come with restrictions to ensure the rules are sound, and different texts will use different restrictions). Roughly, we can let y be stand for the particular such that ¬(P(y) ∨ ¬(y = a)). Apply De Morgan's law to get ¬P(y) ∧ (y = a). Since y = a, it must be that ¬P(a), contradicting our assumption that P(a). Hence our contradiction completing the indirect proof of ∀x(P(x) ∨ ¬(x = a)).



            Hope this helps!






            share|improve this answer



























              2














              HINT: I'll sketch the derivation. Since the theorem is a conditional, try using conditional proof/conditional-introduction by assuming P(a) and trying to derive ∀x(P(x) ∨ ¬(x = a)) from it. Here, to derive it, I would try an indirect proof by assuming the negation ¬∀x(P(x) ∨ ¬(x = a)) and trying to derive a contradiction. Use quantifier equivalence rules to get ∃x¬(P(x) ∨ ¬(x = a)).



              The next steps will be a little different depending on your list of rules (quantifier rules typically come with restrictions to ensure the rules are sound, and different texts will use different restrictions). Roughly, we can let y be stand for the particular such that ¬(P(y) ∨ ¬(y = a)). Apply De Morgan's law to get ¬P(y) ∧ (y = a). Since y = a, it must be that ¬P(a), contradicting our assumption that P(a). Hence our contradiction completing the indirect proof of ∀x(P(x) ∨ ¬(x = a)).



              Hope this helps!






              share|improve this answer

























                2












                2








                2







                HINT: I'll sketch the derivation. Since the theorem is a conditional, try using conditional proof/conditional-introduction by assuming P(a) and trying to derive ∀x(P(x) ∨ ¬(x = a)) from it. Here, to derive it, I would try an indirect proof by assuming the negation ¬∀x(P(x) ∨ ¬(x = a)) and trying to derive a contradiction. Use quantifier equivalence rules to get ∃x¬(P(x) ∨ ¬(x = a)).



                The next steps will be a little different depending on your list of rules (quantifier rules typically come with restrictions to ensure the rules are sound, and different texts will use different restrictions). Roughly, we can let y be stand for the particular such that ¬(P(y) ∨ ¬(y = a)). Apply De Morgan's law to get ¬P(y) ∧ (y = a). Since y = a, it must be that ¬P(a), contradicting our assumption that P(a). Hence our contradiction completing the indirect proof of ∀x(P(x) ∨ ¬(x = a)).



                Hope this helps!






                share|improve this answer













                HINT: I'll sketch the derivation. Since the theorem is a conditional, try using conditional proof/conditional-introduction by assuming P(a) and trying to derive ∀x(P(x) ∨ ¬(x = a)) from it. Here, to derive it, I would try an indirect proof by assuming the negation ¬∀x(P(x) ∨ ¬(x = a)) and trying to derive a contradiction. Use quantifier equivalence rules to get ∃x¬(P(x) ∨ ¬(x = a)).



                The next steps will be a little different depending on your list of rules (quantifier rules typically come with restrictions to ensure the rules are sound, and different texts will use different restrictions). Roughly, we can let y be stand for the particular such that ¬(P(y) ∨ ¬(y = a)). Apply De Morgan's law to get ¬P(y) ∧ (y = a). Since y = a, it must be that ¬P(a), contradicting our assumption that P(a). Hence our contradiction completing the indirect proof of ∀x(P(x) ∨ ¬(x = a)).



                Hope this helps!







                share|improve this answer












                share|improve this answer



                share|improve this answer










                answered 1 hour ago









                AdamAdam

                4358




                4358




















                    Moey mnm is a new contributor. Be nice, and check out our Code of Conduct.









                    draft saved

                    draft discarded


















                    Moey mnm is a new contributor. Be nice, and check out our Code of Conduct.












                    Moey mnm is a new contributor. Be nice, and check out our Code of Conduct.











                    Moey mnm is a new contributor. Be nice, and check out our Code of Conduct.














                    Thanks for contributing an answer to Philosophy Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphilosophy.stackexchange.com%2fquestions%2f61580%2fhow-to-prove-pa-%25e2%2586%2592-%25e2%2588%2580xpx-%25e2%2588%25a8-%25c2%25acx-a-using-natural-deduction%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Reverse int within the 32-bit signed integer range: [−2^31, 2^31 − 1]Combining two 32-bit integers into one 64-bit integerDetermine if an int is within rangeLossy packing 32 bit integer to 16 bitComputing the square root of a 64-bit integerKeeping integer addition within boundsSafe multiplication of two 64-bit signed integersLeetcode 10: Regular Expression MatchingSigned integer-to-ascii x86_64 assembler macroReverse the digits of an Integer“Add two numbers given in reverse order from a linked list”

                    Category:Fedor von Bock Media in category "Fedor von Bock"Navigation menuUpload mediaISNI: 0000 0000 5511 3417VIAF ID: 24712551GND ID: 119294796Library of Congress authority ID: n96068363BnF ID: 12534305fSUDOC authorities ID: 034604189Open Library ID: OL338253ANKCR AUT ID: jn19990000869National Library of Israel ID: 000514068National Thesaurus for Author Names ID: 341574317ReasonatorScholiaStatistics

                    Kiel Indholdsfortegnelse Historie | Transport og færgeforbindelser | Sejlsport og anden sport | Kultur | Kendte personer fra Kiel | Noter | Litteratur | Eksterne henvisninger | Navigationsmenuwww.kiel.de54°19′31″N 10°8′26″Ø / 54.32528°N 10.14056°Ø / 54.32528; 10.14056Oberbürgermeister Dr. Ulf Kämpferwww.statistik-nord.deDen danske Stats StatistikKiels hjemmesiderrrWorldCat312794080n790547494030481-4