How to enclose theorems and definition in rectangles?Vertical space around theoremsTheorems and Definitions as quotesHow to replace all pictures by white rectangles?How to remove line breaks before and after theorems?Horizontal spaces to the left and right of theoremsExtra spacing around restatable theoremsKOMA script and amsthm: Space lost before and after theoremsShrinking spacing around definition environmentTheorems and parskipremove spacing from a definition

How seriously should I take size and weight limits of hand luggage?

Do Iron Man suits sport waste management systems?

Unlock My Phone! February 2018

OP Amp not amplifying audio signal

how do we prove that a sum of two periods is still a period?

Can compressed videos be decoded back to their uncompresed original format?

Sums of two squares in arithmetic progressions

How to coordinate airplane tickets?

How to install cross-compiler on Ubuntu 18.04?

What do you call someone who asks many questions?

Why is the sentence "Das ist eine Nase" correct?

Avoiding the "not like other girls" trope?

My ex-girlfriend uses my Apple ID to log in to her iPad. Do I have to give her my Apple ID password to reset it?

How does a dynamic QR code work?

Bullying boss launched a smear campaign and made me unemployable

Convert seconds to minutes

How obscure is the use of 令 in 令和?

How to show a landlord what we have in savings?

Why was the shrink from 8″ made only to 5.25″ and not smaller (4″ or less)

Implication of namely

Finitely generated matrix groups whose eigenvalues are all algebraic

How badly should I try to prevent a user from XSSing themselves?

If a warlock makes a Dancing Sword their pact weapon, is there a way to prevent it from disappearing if it's farther away for more than a minute?

What's the meaning of "Sollensaussagen"?



How to enclose theorems and definition in rectangles?


Vertical space around theoremsTheorems and Definitions as quotesHow to replace all pictures by white rectangles?How to remove line breaks before and after theorems?Horizontal spaces to the left and right of theoremsExtra spacing around restatable theoremsKOMA script and amsthm: Space lost before and after theoremsShrinking spacing around definition environmentTheorems and parskipremove spacing from a definition













1















The following code



documentclassarticle


usepackageamsthm
usepackageamsmath
usepackagemathtools

usepackage[left=1.5in, right=1.5in, top=0.5in]geometry



newtheoremdefinitionDefinition
newtheoremtheoremTheorem


begindocument
titleExtra Credit
maketitle

begindefinition
If f is analytic at $z_0$, then the series

beginequation
f(z_0) + f'(z_0)(z-z_0) + fracf''(z_0)2!(z-z_0)^2 + cdots = sum_n=0^infty fracf^(n)(z_0)n!(z-z_0)^n
endequation

is called the Taylor series for f around $z_0$.
enddefinition

begintheorem
If f is analytic inside and on the simple closed positively oriented contour $Gamma$ and if $z_0$ is any point inside $Gamma$, then
beginequation
f^(n)(z_0) = fracn!2pi i int_Gamma fracf(zeta)(zeta - z_0)^n+1dzeta hspace1cm (n=1,2,3, cdots )
endequation
endtheorem

begintheorem
(Cauchy's Integral Formula) Let $Gamma$ be a simple closed positively oriented contour. If $f$ is analytic in some simply connected domain $D$ containing $Gamma$ and $z_0$ is any point inside $Gamma$, then
beginequation
f(z_0)= frac12pi i int_Gamma fracf(z)z-z_0 dz
endequation
endtheorem
noindent hrulefill

begintheorem
If f is analytic in the disk $|z-z_0|<R'$, then the Taylor series $(1)$ converges to $f(z)$ for all $z$ in this disk.
endtheorem


produces the following image
enter image description here



How can I enclose Definition 1, Theorem 1, and Theorem 2 in separate rectangles. And have these rectangles separated by a space?










share|improve this question







New contributor




K.M is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.




















  • Do you want all theorems/definition to be enclosed in a frame, or only some?

    – Bernard
    3 hours ago












  • I would like all theorems/definitions to be enclosed in a frame except for Theorem 3

    – K.M
    3 hours ago











  • In this case you should take a look at the newframedtheorem command in ntheorem.

    – Bernard
    3 hours ago















1















The following code



documentclassarticle


usepackageamsthm
usepackageamsmath
usepackagemathtools

usepackage[left=1.5in, right=1.5in, top=0.5in]geometry



newtheoremdefinitionDefinition
newtheoremtheoremTheorem


begindocument
titleExtra Credit
maketitle

begindefinition
If f is analytic at $z_0$, then the series

beginequation
f(z_0) + f'(z_0)(z-z_0) + fracf''(z_0)2!(z-z_0)^2 + cdots = sum_n=0^infty fracf^(n)(z_0)n!(z-z_0)^n
endequation

is called the Taylor series for f around $z_0$.
enddefinition

begintheorem
If f is analytic inside and on the simple closed positively oriented contour $Gamma$ and if $z_0$ is any point inside $Gamma$, then
beginequation
f^(n)(z_0) = fracn!2pi i int_Gamma fracf(zeta)(zeta - z_0)^n+1dzeta hspace1cm (n=1,2,3, cdots )
endequation
endtheorem

begintheorem
(Cauchy's Integral Formula) Let $Gamma$ be a simple closed positively oriented contour. If $f$ is analytic in some simply connected domain $D$ containing $Gamma$ and $z_0$ is any point inside $Gamma$, then
beginequation
f(z_0)= frac12pi i int_Gamma fracf(z)z-z_0 dz
endequation
endtheorem
noindent hrulefill

begintheorem
If f is analytic in the disk $|z-z_0|<R'$, then the Taylor series $(1)$ converges to $f(z)$ for all $z$ in this disk.
endtheorem


produces the following image
enter image description here



How can I enclose Definition 1, Theorem 1, and Theorem 2 in separate rectangles. And have these rectangles separated by a space?










share|improve this question







New contributor




K.M is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.




















  • Do you want all theorems/definition to be enclosed in a frame, or only some?

    – Bernard
    3 hours ago












  • I would like all theorems/definitions to be enclosed in a frame except for Theorem 3

    – K.M
    3 hours ago











  • In this case you should take a look at the newframedtheorem command in ntheorem.

    – Bernard
    3 hours ago













1












1








1








The following code



documentclassarticle


usepackageamsthm
usepackageamsmath
usepackagemathtools

usepackage[left=1.5in, right=1.5in, top=0.5in]geometry



newtheoremdefinitionDefinition
newtheoremtheoremTheorem


begindocument
titleExtra Credit
maketitle

begindefinition
If f is analytic at $z_0$, then the series

beginequation
f(z_0) + f'(z_0)(z-z_0) + fracf''(z_0)2!(z-z_0)^2 + cdots = sum_n=0^infty fracf^(n)(z_0)n!(z-z_0)^n
endequation

is called the Taylor series for f around $z_0$.
enddefinition

begintheorem
If f is analytic inside and on the simple closed positively oriented contour $Gamma$ and if $z_0$ is any point inside $Gamma$, then
beginequation
f^(n)(z_0) = fracn!2pi i int_Gamma fracf(zeta)(zeta - z_0)^n+1dzeta hspace1cm (n=1,2,3, cdots )
endequation
endtheorem

begintheorem
(Cauchy's Integral Formula) Let $Gamma$ be a simple closed positively oriented contour. If $f$ is analytic in some simply connected domain $D$ containing $Gamma$ and $z_0$ is any point inside $Gamma$, then
beginequation
f(z_0)= frac12pi i int_Gamma fracf(z)z-z_0 dz
endequation
endtheorem
noindent hrulefill

begintheorem
If f is analytic in the disk $|z-z_0|<R'$, then the Taylor series $(1)$ converges to $f(z)$ for all $z$ in this disk.
endtheorem


produces the following image
enter image description here



How can I enclose Definition 1, Theorem 1, and Theorem 2 in separate rectangles. And have these rectangles separated by a space?










share|improve this question







New contributor




K.M is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.












The following code



documentclassarticle


usepackageamsthm
usepackageamsmath
usepackagemathtools

usepackage[left=1.5in, right=1.5in, top=0.5in]geometry



newtheoremdefinitionDefinition
newtheoremtheoremTheorem


begindocument
titleExtra Credit
maketitle

begindefinition
If f is analytic at $z_0$, then the series

beginequation
f(z_0) + f'(z_0)(z-z_0) + fracf''(z_0)2!(z-z_0)^2 + cdots = sum_n=0^infty fracf^(n)(z_0)n!(z-z_0)^n
endequation

is called the Taylor series for f around $z_0$.
enddefinition

begintheorem
If f is analytic inside and on the simple closed positively oriented contour $Gamma$ and if $z_0$ is any point inside $Gamma$, then
beginequation
f^(n)(z_0) = fracn!2pi i int_Gamma fracf(zeta)(zeta - z_0)^n+1dzeta hspace1cm (n=1,2,3, cdots )
endequation
endtheorem

begintheorem
(Cauchy's Integral Formula) Let $Gamma$ be a simple closed positively oriented contour. If $f$ is analytic in some simply connected domain $D$ containing $Gamma$ and $z_0$ is any point inside $Gamma$, then
beginequation
f(z_0)= frac12pi i int_Gamma fracf(z)z-z_0 dz
endequation
endtheorem
noindent hrulefill

begintheorem
If f is analytic in the disk $|z-z_0|<R'$, then the Taylor series $(1)$ converges to $f(z)$ for all $z$ in this disk.
endtheorem


produces the following image
enter image description here



How can I enclose Definition 1, Theorem 1, and Theorem 2 in separate rectangles. And have these rectangles separated by a space?







spacing






share|improve this question







New contributor




K.M is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|improve this question







New contributor




K.M is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|improve this question




share|improve this question






New contributor




K.M is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 3 hours ago









K.MK.M

1305




1305




New contributor




K.M is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





K.M is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






K.M is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.












  • Do you want all theorems/definition to be enclosed in a frame, or only some?

    – Bernard
    3 hours ago












  • I would like all theorems/definitions to be enclosed in a frame except for Theorem 3

    – K.M
    3 hours ago











  • In this case you should take a look at the newframedtheorem command in ntheorem.

    – Bernard
    3 hours ago

















  • Do you want all theorems/definition to be enclosed in a frame, or only some?

    – Bernard
    3 hours ago












  • I would like all theorems/definitions to be enclosed in a frame except for Theorem 3

    – K.M
    3 hours ago











  • In this case you should take a look at the newframedtheorem command in ntheorem.

    – Bernard
    3 hours ago
















Do you want all theorems/definition to be enclosed in a frame, or only some?

– Bernard
3 hours ago






Do you want all theorems/definition to be enclosed in a frame, or only some?

– Bernard
3 hours ago














I would like all theorems/definitions to be enclosed in a frame except for Theorem 3

– K.M
3 hours ago





I would like all theorems/definitions to be enclosed in a frame except for Theorem 3

– K.M
3 hours ago













In this case you should take a look at the newframedtheorem command in ntheorem.

– Bernard
3 hours ago





In this case you should take a look at the newframedtheorem command in ntheorem.

– Bernard
3 hours ago










2 Answers
2






active

oldest

votes


















1














You can try with shadethm package, it can do all you want and many more. In you example what you need is:



documentclassarticle
usepackageshadethm
usepackagemathtools

newshadetheoremboxdefDefinition[section]
newshadetheoremboxtheorem[boxdef]Theorem
newtheoremtheorem[boxdef]Theorem

setlengthshadeboxsep2pt
setlengthshadeboxrule.4pt
setlengthshadedtextwidthtextwidth
addtolengthshadedtextwidth-2shadeboxsep
addtolengthshadedtextwidth-2shadeboxrule
setlengthshadeleftshift0pt
setlengthshaderightshift0pt
definecolorshadethmcolorcmyk0,0,0,0
definecolorshaderulecolorcmyk0,0,0,1

begindocument

sectionBoxed theorems

beginboxdef
If f is analytic at $z_0$, then the series

beginequation
f(z_0) + f'(z_0)(z-z_0) + fracf''(z_0)2!(z-z_0)^2 + cdots = sum_n=0^infty fracf^(n)(z_0)n!(z-z_0)^n
endequation

is called the Taylor series for f around $z_0$.
endboxdef

beginboxtheorem
If f is analytic inside and on the simple closed positively oriented contour $Gamma$ and if $z_0$ is any point inside $Gamma$, then
beginequation
f^(n)(z_0) = fracn!2pi i int_Gamma fracf(zeta)(zeta - z_0)^n+1dzeta hspace1cm (n=1,2,3, cdots )
endequation
endboxtheorem

beginboxtheorem
(Cauchy's Integral Formula) Let $Gamma$ be a simple closed positively oriented contour. If $f$ is analytic in some simply connected domain $D$ containing $Gamma$ and $z_0$ is any point inside $Gamma$, then
beginequation
f(z_0)= frac12pi i int_Gamma fracf(z)z-z_0 dz
endequation
endboxtheorem
noindent hrulefill

begintheorem
If f is analytic in the disk $|z-z_0|<R'$, then the Taylor series $(1)$ converges to $f(z)$ for all $z$ in this disk.
endtheorem

enddocument


which produces the following:



enter image description here






share|improve this answer























  • For newshadetheoremboxdefDefinition[section] newshadetheoremboxtheorem[boxdef]Theorem newtheoremtheorem[boxdef]Theorem, why is boxdef in brackets?

    – K.M
    2 hours ago



















2














Here is a solution with thmtools, which cooperates wit amsthm. Unrelated: you don't have to load amsmath if you load mathtools, as the latter does it for you:



documentclassarticle
usepackageamsthm, thmtools
usepackagemathtools

usepackage[left=1.5in, right=1.5in, top=0.5in]geometry

newtheoremdefinitionDefinition
newtheoremtheoremTheorem

declaretheorem[sibling=definition, shaded=rulecolor=black, rulewidth=0.6pt, bgcolor=rgb1,1,1,name=Definition]boxeddef
declaretheorem[sibling=theorem, shaded=rulecolor=black, rulewidth=0.6pt, bgcolor=rgb1,1,1,name=Theorem]boxedthm

begindocument
titleExtra Credit
author
maketitle

beginboxeddef
If f is analytic at $z_0$, then the series

beginequation
f(z_0) + f'(z_0)(z-z_0) + fracf''(z_0)2!(z-z_0)^2 + cdots = sum_n=0^infty fracf^(n)(z_0)n!(z-z_0)^n
endequation

is called the Taylor series for f around $z_0$.
endboxeddef

beginboxedthm
If f is analytic inside and on the simple closed positively oriented contour $Gamma$ and if $z_0$ is any point inside $Gamma$, then
beginequation
f^(n)(z_0) = fracn!2pi i int_Gamma fracf(zeta)(zeta - z_0)^n+1dzeta hspace1cm (n=1,2,3, cdots )
endequation
endboxedthm

beginboxedthm
(Cauchy's Integral Formula) Let $Gamma$ be a simple closed positively oriented contour. If $f$ is analytic in some simply connected domain $D$ containing $Gamma$ and $z_0$ is any point inside $Gamma$, then
beginequation
f(z_0)= frac12pi i int_Gamma fracf(z)z-z_0 dz
endequation
endboxedthm

noindent hrulefill

begintheorem
If f is analytic in the disk $|z-z_0|<R'$, then the Taylor series $(1)$ converges to $f(z)$ for all $z$ in this disk.
endtheorem

enddocument


enter image description here






share|improve this answer























    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "85"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );






    K.M is a new contributor. Be nice, and check out our Code of Conduct.









    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f482860%2fhow-to-enclose-theorems-and-definition-in-rectangles%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1














    You can try with shadethm package, it can do all you want and many more. In you example what you need is:



    documentclassarticle
    usepackageshadethm
    usepackagemathtools

    newshadetheoremboxdefDefinition[section]
    newshadetheoremboxtheorem[boxdef]Theorem
    newtheoremtheorem[boxdef]Theorem

    setlengthshadeboxsep2pt
    setlengthshadeboxrule.4pt
    setlengthshadedtextwidthtextwidth
    addtolengthshadedtextwidth-2shadeboxsep
    addtolengthshadedtextwidth-2shadeboxrule
    setlengthshadeleftshift0pt
    setlengthshaderightshift0pt
    definecolorshadethmcolorcmyk0,0,0,0
    definecolorshaderulecolorcmyk0,0,0,1

    begindocument

    sectionBoxed theorems

    beginboxdef
    If f is analytic at $z_0$, then the series

    beginequation
    f(z_0) + f'(z_0)(z-z_0) + fracf''(z_0)2!(z-z_0)^2 + cdots = sum_n=0^infty fracf^(n)(z_0)n!(z-z_0)^n
    endequation

    is called the Taylor series for f around $z_0$.
    endboxdef

    beginboxtheorem
    If f is analytic inside and on the simple closed positively oriented contour $Gamma$ and if $z_0$ is any point inside $Gamma$, then
    beginequation
    f^(n)(z_0) = fracn!2pi i int_Gamma fracf(zeta)(zeta - z_0)^n+1dzeta hspace1cm (n=1,2,3, cdots )
    endequation
    endboxtheorem

    beginboxtheorem
    (Cauchy's Integral Formula) Let $Gamma$ be a simple closed positively oriented contour. If $f$ is analytic in some simply connected domain $D$ containing $Gamma$ and $z_0$ is any point inside $Gamma$, then
    beginequation
    f(z_0)= frac12pi i int_Gamma fracf(z)z-z_0 dz
    endequation
    endboxtheorem
    noindent hrulefill

    begintheorem
    If f is analytic in the disk $|z-z_0|<R'$, then the Taylor series $(1)$ converges to $f(z)$ for all $z$ in this disk.
    endtheorem

    enddocument


    which produces the following:



    enter image description here






    share|improve this answer























    • For newshadetheoremboxdefDefinition[section] newshadetheoremboxtheorem[boxdef]Theorem newtheoremtheorem[boxdef]Theorem, why is boxdef in brackets?

      – K.M
      2 hours ago
















    1














    You can try with shadethm package, it can do all you want and many more. In you example what you need is:



    documentclassarticle
    usepackageshadethm
    usepackagemathtools

    newshadetheoremboxdefDefinition[section]
    newshadetheoremboxtheorem[boxdef]Theorem
    newtheoremtheorem[boxdef]Theorem

    setlengthshadeboxsep2pt
    setlengthshadeboxrule.4pt
    setlengthshadedtextwidthtextwidth
    addtolengthshadedtextwidth-2shadeboxsep
    addtolengthshadedtextwidth-2shadeboxrule
    setlengthshadeleftshift0pt
    setlengthshaderightshift0pt
    definecolorshadethmcolorcmyk0,0,0,0
    definecolorshaderulecolorcmyk0,0,0,1

    begindocument

    sectionBoxed theorems

    beginboxdef
    If f is analytic at $z_0$, then the series

    beginequation
    f(z_0) + f'(z_0)(z-z_0) + fracf''(z_0)2!(z-z_0)^2 + cdots = sum_n=0^infty fracf^(n)(z_0)n!(z-z_0)^n
    endequation

    is called the Taylor series for f around $z_0$.
    endboxdef

    beginboxtheorem
    If f is analytic inside and on the simple closed positively oriented contour $Gamma$ and if $z_0$ is any point inside $Gamma$, then
    beginequation
    f^(n)(z_0) = fracn!2pi i int_Gamma fracf(zeta)(zeta - z_0)^n+1dzeta hspace1cm (n=1,2,3, cdots )
    endequation
    endboxtheorem

    beginboxtheorem
    (Cauchy's Integral Formula) Let $Gamma$ be a simple closed positively oriented contour. If $f$ is analytic in some simply connected domain $D$ containing $Gamma$ and $z_0$ is any point inside $Gamma$, then
    beginequation
    f(z_0)= frac12pi i int_Gamma fracf(z)z-z_0 dz
    endequation
    endboxtheorem
    noindent hrulefill

    begintheorem
    If f is analytic in the disk $|z-z_0|<R'$, then the Taylor series $(1)$ converges to $f(z)$ for all $z$ in this disk.
    endtheorem

    enddocument


    which produces the following:



    enter image description here






    share|improve this answer























    • For newshadetheoremboxdefDefinition[section] newshadetheoremboxtheorem[boxdef]Theorem newtheoremtheorem[boxdef]Theorem, why is boxdef in brackets?

      – K.M
      2 hours ago














    1












    1








    1







    You can try with shadethm package, it can do all you want and many more. In you example what you need is:



    documentclassarticle
    usepackageshadethm
    usepackagemathtools

    newshadetheoremboxdefDefinition[section]
    newshadetheoremboxtheorem[boxdef]Theorem
    newtheoremtheorem[boxdef]Theorem

    setlengthshadeboxsep2pt
    setlengthshadeboxrule.4pt
    setlengthshadedtextwidthtextwidth
    addtolengthshadedtextwidth-2shadeboxsep
    addtolengthshadedtextwidth-2shadeboxrule
    setlengthshadeleftshift0pt
    setlengthshaderightshift0pt
    definecolorshadethmcolorcmyk0,0,0,0
    definecolorshaderulecolorcmyk0,0,0,1

    begindocument

    sectionBoxed theorems

    beginboxdef
    If f is analytic at $z_0$, then the series

    beginequation
    f(z_0) + f'(z_0)(z-z_0) + fracf''(z_0)2!(z-z_0)^2 + cdots = sum_n=0^infty fracf^(n)(z_0)n!(z-z_0)^n
    endequation

    is called the Taylor series for f around $z_0$.
    endboxdef

    beginboxtheorem
    If f is analytic inside and on the simple closed positively oriented contour $Gamma$ and if $z_0$ is any point inside $Gamma$, then
    beginequation
    f^(n)(z_0) = fracn!2pi i int_Gamma fracf(zeta)(zeta - z_0)^n+1dzeta hspace1cm (n=1,2,3, cdots )
    endequation
    endboxtheorem

    beginboxtheorem
    (Cauchy's Integral Formula) Let $Gamma$ be a simple closed positively oriented contour. If $f$ is analytic in some simply connected domain $D$ containing $Gamma$ and $z_0$ is any point inside $Gamma$, then
    beginequation
    f(z_0)= frac12pi i int_Gamma fracf(z)z-z_0 dz
    endequation
    endboxtheorem
    noindent hrulefill

    begintheorem
    If f is analytic in the disk $|z-z_0|<R'$, then the Taylor series $(1)$ converges to $f(z)$ for all $z$ in this disk.
    endtheorem

    enddocument


    which produces the following:



    enter image description here






    share|improve this answer













    You can try with shadethm package, it can do all you want and many more. In you example what you need is:



    documentclassarticle
    usepackageshadethm
    usepackagemathtools

    newshadetheoremboxdefDefinition[section]
    newshadetheoremboxtheorem[boxdef]Theorem
    newtheoremtheorem[boxdef]Theorem

    setlengthshadeboxsep2pt
    setlengthshadeboxrule.4pt
    setlengthshadedtextwidthtextwidth
    addtolengthshadedtextwidth-2shadeboxsep
    addtolengthshadedtextwidth-2shadeboxrule
    setlengthshadeleftshift0pt
    setlengthshaderightshift0pt
    definecolorshadethmcolorcmyk0,0,0,0
    definecolorshaderulecolorcmyk0,0,0,1

    begindocument

    sectionBoxed theorems

    beginboxdef
    If f is analytic at $z_0$, then the series

    beginequation
    f(z_0) + f'(z_0)(z-z_0) + fracf''(z_0)2!(z-z_0)^2 + cdots = sum_n=0^infty fracf^(n)(z_0)n!(z-z_0)^n
    endequation

    is called the Taylor series for f around $z_0$.
    endboxdef

    beginboxtheorem
    If f is analytic inside and on the simple closed positively oriented contour $Gamma$ and if $z_0$ is any point inside $Gamma$, then
    beginequation
    f^(n)(z_0) = fracn!2pi i int_Gamma fracf(zeta)(zeta - z_0)^n+1dzeta hspace1cm (n=1,2,3, cdots )
    endequation
    endboxtheorem

    beginboxtheorem
    (Cauchy's Integral Formula) Let $Gamma$ be a simple closed positively oriented contour. If $f$ is analytic in some simply connected domain $D$ containing $Gamma$ and $z_0$ is any point inside $Gamma$, then
    beginequation
    f(z_0)= frac12pi i int_Gamma fracf(z)z-z_0 dz
    endequation
    endboxtheorem
    noindent hrulefill

    begintheorem
    If f is analytic in the disk $|z-z_0|<R'$, then the Taylor series $(1)$ converges to $f(z)$ for all $z$ in this disk.
    endtheorem

    enddocument


    which produces the following:



    enter image description here







    share|improve this answer












    share|improve this answer



    share|improve this answer










    answered 2 hours ago









    Luis TurcioLuis Turcio

    1259




    1259












    • For newshadetheoremboxdefDefinition[section] newshadetheoremboxtheorem[boxdef]Theorem newtheoremtheorem[boxdef]Theorem, why is boxdef in brackets?

      – K.M
      2 hours ago


















    • For newshadetheoremboxdefDefinition[section] newshadetheoremboxtheorem[boxdef]Theorem newtheoremtheorem[boxdef]Theorem, why is boxdef in brackets?

      – K.M
      2 hours ago

















    For newshadetheoremboxdefDefinition[section] newshadetheoremboxtheorem[boxdef]Theorem newtheoremtheorem[boxdef]Theorem, why is boxdef in brackets?

    – K.M
    2 hours ago






    For newshadetheoremboxdefDefinition[section] newshadetheoremboxtheorem[boxdef]Theorem newtheoremtheorem[boxdef]Theorem, why is boxdef in brackets?

    – K.M
    2 hours ago












    2














    Here is a solution with thmtools, which cooperates wit amsthm. Unrelated: you don't have to load amsmath if you load mathtools, as the latter does it for you:



    documentclassarticle
    usepackageamsthm, thmtools
    usepackagemathtools

    usepackage[left=1.5in, right=1.5in, top=0.5in]geometry

    newtheoremdefinitionDefinition
    newtheoremtheoremTheorem

    declaretheorem[sibling=definition, shaded=rulecolor=black, rulewidth=0.6pt, bgcolor=rgb1,1,1,name=Definition]boxeddef
    declaretheorem[sibling=theorem, shaded=rulecolor=black, rulewidth=0.6pt, bgcolor=rgb1,1,1,name=Theorem]boxedthm

    begindocument
    titleExtra Credit
    author
    maketitle

    beginboxeddef
    If f is analytic at $z_0$, then the series

    beginequation
    f(z_0) + f'(z_0)(z-z_0) + fracf''(z_0)2!(z-z_0)^2 + cdots = sum_n=0^infty fracf^(n)(z_0)n!(z-z_0)^n
    endequation

    is called the Taylor series for f around $z_0$.
    endboxeddef

    beginboxedthm
    If f is analytic inside and on the simple closed positively oriented contour $Gamma$ and if $z_0$ is any point inside $Gamma$, then
    beginequation
    f^(n)(z_0) = fracn!2pi i int_Gamma fracf(zeta)(zeta - z_0)^n+1dzeta hspace1cm (n=1,2,3, cdots )
    endequation
    endboxedthm

    beginboxedthm
    (Cauchy's Integral Formula) Let $Gamma$ be a simple closed positively oriented contour. If $f$ is analytic in some simply connected domain $D$ containing $Gamma$ and $z_0$ is any point inside $Gamma$, then
    beginequation
    f(z_0)= frac12pi i int_Gamma fracf(z)z-z_0 dz
    endequation
    endboxedthm

    noindent hrulefill

    begintheorem
    If f is analytic in the disk $|z-z_0|<R'$, then the Taylor series $(1)$ converges to $f(z)$ for all $z$ in this disk.
    endtheorem

    enddocument


    enter image description here






    share|improve this answer



























      2














      Here is a solution with thmtools, which cooperates wit amsthm. Unrelated: you don't have to load amsmath if you load mathtools, as the latter does it for you:



      documentclassarticle
      usepackageamsthm, thmtools
      usepackagemathtools

      usepackage[left=1.5in, right=1.5in, top=0.5in]geometry

      newtheoremdefinitionDefinition
      newtheoremtheoremTheorem

      declaretheorem[sibling=definition, shaded=rulecolor=black, rulewidth=0.6pt, bgcolor=rgb1,1,1,name=Definition]boxeddef
      declaretheorem[sibling=theorem, shaded=rulecolor=black, rulewidth=0.6pt, bgcolor=rgb1,1,1,name=Theorem]boxedthm

      begindocument
      titleExtra Credit
      author
      maketitle

      beginboxeddef
      If f is analytic at $z_0$, then the series

      beginequation
      f(z_0) + f'(z_0)(z-z_0) + fracf''(z_0)2!(z-z_0)^2 + cdots = sum_n=0^infty fracf^(n)(z_0)n!(z-z_0)^n
      endequation

      is called the Taylor series for f around $z_0$.
      endboxeddef

      beginboxedthm
      If f is analytic inside and on the simple closed positively oriented contour $Gamma$ and if $z_0$ is any point inside $Gamma$, then
      beginequation
      f^(n)(z_0) = fracn!2pi i int_Gamma fracf(zeta)(zeta - z_0)^n+1dzeta hspace1cm (n=1,2,3, cdots )
      endequation
      endboxedthm

      beginboxedthm
      (Cauchy's Integral Formula) Let $Gamma$ be a simple closed positively oriented contour. If $f$ is analytic in some simply connected domain $D$ containing $Gamma$ and $z_0$ is any point inside $Gamma$, then
      beginequation
      f(z_0)= frac12pi i int_Gamma fracf(z)z-z_0 dz
      endequation
      endboxedthm

      noindent hrulefill

      begintheorem
      If f is analytic in the disk $|z-z_0|<R'$, then the Taylor series $(1)$ converges to $f(z)$ for all $z$ in this disk.
      endtheorem

      enddocument


      enter image description here






      share|improve this answer

























        2












        2








        2







        Here is a solution with thmtools, which cooperates wit amsthm. Unrelated: you don't have to load amsmath if you load mathtools, as the latter does it for you:



        documentclassarticle
        usepackageamsthm, thmtools
        usepackagemathtools

        usepackage[left=1.5in, right=1.5in, top=0.5in]geometry

        newtheoremdefinitionDefinition
        newtheoremtheoremTheorem

        declaretheorem[sibling=definition, shaded=rulecolor=black, rulewidth=0.6pt, bgcolor=rgb1,1,1,name=Definition]boxeddef
        declaretheorem[sibling=theorem, shaded=rulecolor=black, rulewidth=0.6pt, bgcolor=rgb1,1,1,name=Theorem]boxedthm

        begindocument
        titleExtra Credit
        author
        maketitle

        beginboxeddef
        If f is analytic at $z_0$, then the series

        beginequation
        f(z_0) + f'(z_0)(z-z_0) + fracf''(z_0)2!(z-z_0)^2 + cdots = sum_n=0^infty fracf^(n)(z_0)n!(z-z_0)^n
        endequation

        is called the Taylor series for f around $z_0$.
        endboxeddef

        beginboxedthm
        If f is analytic inside and on the simple closed positively oriented contour $Gamma$ and if $z_0$ is any point inside $Gamma$, then
        beginequation
        f^(n)(z_0) = fracn!2pi i int_Gamma fracf(zeta)(zeta - z_0)^n+1dzeta hspace1cm (n=1,2,3, cdots )
        endequation
        endboxedthm

        beginboxedthm
        (Cauchy's Integral Formula) Let $Gamma$ be a simple closed positively oriented contour. If $f$ is analytic in some simply connected domain $D$ containing $Gamma$ and $z_0$ is any point inside $Gamma$, then
        beginequation
        f(z_0)= frac12pi i int_Gamma fracf(z)z-z_0 dz
        endequation
        endboxedthm

        noindent hrulefill

        begintheorem
        If f is analytic in the disk $|z-z_0|<R'$, then the Taylor series $(1)$ converges to $f(z)$ for all $z$ in this disk.
        endtheorem

        enddocument


        enter image description here






        share|improve this answer













        Here is a solution with thmtools, which cooperates wit amsthm. Unrelated: you don't have to load amsmath if you load mathtools, as the latter does it for you:



        documentclassarticle
        usepackageamsthm, thmtools
        usepackagemathtools

        usepackage[left=1.5in, right=1.5in, top=0.5in]geometry

        newtheoremdefinitionDefinition
        newtheoremtheoremTheorem

        declaretheorem[sibling=definition, shaded=rulecolor=black, rulewidth=0.6pt, bgcolor=rgb1,1,1,name=Definition]boxeddef
        declaretheorem[sibling=theorem, shaded=rulecolor=black, rulewidth=0.6pt, bgcolor=rgb1,1,1,name=Theorem]boxedthm

        begindocument
        titleExtra Credit
        author
        maketitle

        beginboxeddef
        If f is analytic at $z_0$, then the series

        beginequation
        f(z_0) + f'(z_0)(z-z_0) + fracf''(z_0)2!(z-z_0)^2 + cdots = sum_n=0^infty fracf^(n)(z_0)n!(z-z_0)^n
        endequation

        is called the Taylor series for f around $z_0$.
        endboxeddef

        beginboxedthm
        If f is analytic inside and on the simple closed positively oriented contour $Gamma$ and if $z_0$ is any point inside $Gamma$, then
        beginequation
        f^(n)(z_0) = fracn!2pi i int_Gamma fracf(zeta)(zeta - z_0)^n+1dzeta hspace1cm (n=1,2,3, cdots )
        endequation
        endboxedthm

        beginboxedthm
        (Cauchy's Integral Formula) Let $Gamma$ be a simple closed positively oriented contour. If $f$ is analytic in some simply connected domain $D$ containing $Gamma$ and $z_0$ is any point inside $Gamma$, then
        beginequation
        f(z_0)= frac12pi i int_Gamma fracf(z)z-z_0 dz
        endequation
        endboxedthm

        noindent hrulefill

        begintheorem
        If f is analytic in the disk $|z-z_0|<R'$, then the Taylor series $(1)$ converges to $f(z)$ for all $z$ in this disk.
        endtheorem

        enddocument


        enter image description here







        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered 2 hours ago









        BernardBernard

        175k776207




        175k776207




















            K.M is a new contributor. Be nice, and check out our Code of Conduct.









            draft saved

            draft discarded


















            K.M is a new contributor. Be nice, and check out our Code of Conduct.












            K.M is a new contributor. Be nice, and check out our Code of Conduct.











            K.M is a new contributor. Be nice, and check out our Code of Conduct.














            Thanks for contributing an answer to TeX - LaTeX Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f482860%2fhow-to-enclose-theorems-and-definition-in-rectangles%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Reverse int within the 32-bit signed integer range: [−2^31, 2^31 − 1]Combining two 32-bit integers into one 64-bit integerDetermine if an int is within rangeLossy packing 32 bit integer to 16 bitComputing the square root of a 64-bit integerKeeping integer addition within boundsSafe multiplication of two 64-bit signed integersLeetcode 10: Regular Expression MatchingSigned integer-to-ascii x86_64 assembler macroReverse the digits of an Integer“Add two numbers given in reverse order from a linked list”

            Category:Fedor von Bock Media in category "Fedor von Bock"Navigation menuUpload mediaISNI: 0000 0000 5511 3417VIAF ID: 24712551GND ID: 119294796Library of Congress authority ID: n96068363BnF ID: 12534305fSUDOC authorities ID: 034604189Open Library ID: OL338253ANKCR AUT ID: jn19990000869National Library of Israel ID: 000514068National Thesaurus for Author Names ID: 341574317ReasonatorScholiaStatistics

            Kiel Indholdsfortegnelse Historie | Transport og færgeforbindelser | Sejlsport og anden sport | Kultur | Kendte personer fra Kiel | Noter | Litteratur | Eksterne henvisninger | Navigationsmenuwww.kiel.de54°19′31″N 10°8′26″Ø / 54.32528°N 10.14056°Ø / 54.32528; 10.14056Oberbürgermeister Dr. Ulf Kämpferwww.statistik-nord.deDen danske Stats StatistikKiels hjemmesiderrrWorldCat312794080n790547494030481-4