A Standard Integral EquationLinear versus non-linear integral equationsUnderstanding why the roots of homogeneous difference equation must be eigenvaluesIntegral equation solution: $y(x) = 1 + lambdaintlimits_0^2cos(x-t) y(t) mathrmdt$Integrating with respect to time a double derivative $ddotphi + frac bmdotphi = fracFmr$Integral with Bessel FunctionsEigenvalue problem for integrals in multiple dimensionsStuck on finding the $2times 2$ system of differential equationsConversion of second order ode into integral equationSolving a dual integral equation involving a zeroth-order Bessel functionHow to find a basis of eigenvectors??

node command while defining a coordinate in TikZ

How to deal with or prevent idle in the test team?

Can a Gentile theist be saved?

Are Warlocks Arcane or Divine?

How will losing mobility of one hand affect my career as a programmer?

For airliners, what prevents wing strikes on landing in bad weather?

How can I raise concerns with a new DM about XP splitting?

Calculating the number of days between 2 dates in Excel

Latex for-and in equation

A social experiment. What is the worst that can happen?

How to prevent YouTube from showing already watched videos?

Can I Retrieve Email Addresses from BCC?

Simple image editor tool to draw a simple box/rectangle in an existing image

Meta programming: Declare a new struct on the fly

Lifted its hind leg on or lifted its hind leg towards?

Is a naturally all "male" species possible?

Could solar power be utilized and substitute coal in the 19th century?

How can I successfully establish a nationwide combat training program for a large country?

Invariance of results when scaling explanatory variables in logistic regression, is there a proof?

Giant Toughroad SLR 2 for 200 miles in two days, will it make it?

Can I rely on these GitHub repository files?

Why is delta-v is the most useful quantity for planning space travel?

Is there a problem with hiding "forgot password" until it's needed?

Perfect riffle shuffles



A Standard Integral Equation


Linear versus non-linear integral equationsUnderstanding why the roots of homogeneous difference equation must be eigenvaluesIntegral equation solution: $y(x) = 1 + lambdaintlimits_0^2cos(x-t) y(t) mathrmdt$Integrating with respect to time a double derivative $ddotphi + frac bmdotphi = fracFmr$Integral with Bessel FunctionsEigenvalue problem for integrals in multiple dimensionsStuck on finding the $2times 2$ system of differential equationsConversion of second order ode into integral equationSolving a dual integral equation involving a zeroth-order Bessel functionHow to find a basis of eigenvectors??













3












$begingroup$


Consider the integral equation



$$phi(x) = x + lambdaint_0^1 phi(s),ds$$



Integrating with respect to $x$ from $x=0$ to $x=1$:



$$int_0^1 phi(x),dx = int_0^1x,dx + lambda int_0^1Big[int_0^1phi(s),dsBig],dx$$



which is equivalent to



$$int_0^1 phi(x),dx = frac12 + lambda int_0^1phi(s),ds$$



How can I go from here in order to solve the problem for the homogeneous case and find the corresponding characteristic values and associated rank?










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    What is $lambda$? What do you mean by "solve the problem"? I don't see what "the problem" is supposed to mean. Of which object do you want to find the characteristic values and ranks? Have you checked your definition of $phi$?
    $endgroup$
    – James
    6 hours ago










  • $begingroup$
    My apologies, $lambda$ is an arbitrary constant. In essence I want to obtain an expression of $phi(x)$ which does not contain a function of $s$, which the initial integral equation has.
    $endgroup$
    – LightningStrike
    6 hours ago















3












$begingroup$


Consider the integral equation



$$phi(x) = x + lambdaint_0^1 phi(s),ds$$



Integrating with respect to $x$ from $x=0$ to $x=1$:



$$int_0^1 phi(x),dx = int_0^1x,dx + lambda int_0^1Big[int_0^1phi(s),dsBig],dx$$



which is equivalent to



$$int_0^1 phi(x),dx = frac12 + lambda int_0^1phi(s),ds$$



How can I go from here in order to solve the problem for the homogeneous case and find the corresponding characteristic values and associated rank?










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    What is $lambda$? What do you mean by "solve the problem"? I don't see what "the problem" is supposed to mean. Of which object do you want to find the characteristic values and ranks? Have you checked your definition of $phi$?
    $endgroup$
    – James
    6 hours ago










  • $begingroup$
    My apologies, $lambda$ is an arbitrary constant. In essence I want to obtain an expression of $phi(x)$ which does not contain a function of $s$, which the initial integral equation has.
    $endgroup$
    – LightningStrike
    6 hours ago













3












3








3





$begingroup$


Consider the integral equation



$$phi(x) = x + lambdaint_0^1 phi(s),ds$$



Integrating with respect to $x$ from $x=0$ to $x=1$:



$$int_0^1 phi(x),dx = int_0^1x,dx + lambda int_0^1Big[int_0^1phi(s),dsBig],dx$$



which is equivalent to



$$int_0^1 phi(x),dx = frac12 + lambda int_0^1phi(s),ds$$



How can I go from here in order to solve the problem for the homogeneous case and find the corresponding characteristic values and associated rank?










share|cite|improve this question











$endgroup$




Consider the integral equation



$$phi(x) = x + lambdaint_0^1 phi(s),ds$$



Integrating with respect to $x$ from $x=0$ to $x=1$:



$$int_0^1 phi(x),dx = int_0^1x,dx + lambda int_0^1Big[int_0^1phi(s),dsBig],dx$$



which is equivalent to



$$int_0^1 phi(x),dx = frac12 + lambda int_0^1phi(s),ds$$



How can I go from here in order to solve the problem for the homogeneous case and find the corresponding characteristic values and associated rank?







linear-algebra integration matrix-equations






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 6 hours ago







LightningStrike

















asked 6 hours ago









LightningStrikeLightningStrike

455




455







  • 1




    $begingroup$
    What is $lambda$? What do you mean by "solve the problem"? I don't see what "the problem" is supposed to mean. Of which object do you want to find the characteristic values and ranks? Have you checked your definition of $phi$?
    $endgroup$
    – James
    6 hours ago










  • $begingroup$
    My apologies, $lambda$ is an arbitrary constant. In essence I want to obtain an expression of $phi(x)$ which does not contain a function of $s$, which the initial integral equation has.
    $endgroup$
    – LightningStrike
    6 hours ago












  • 1




    $begingroup$
    What is $lambda$? What do you mean by "solve the problem"? I don't see what "the problem" is supposed to mean. Of which object do you want to find the characteristic values and ranks? Have you checked your definition of $phi$?
    $endgroup$
    – James
    6 hours ago










  • $begingroup$
    My apologies, $lambda$ is an arbitrary constant. In essence I want to obtain an expression of $phi(x)$ which does not contain a function of $s$, which the initial integral equation has.
    $endgroup$
    – LightningStrike
    6 hours ago







1




1




$begingroup$
What is $lambda$? What do you mean by "solve the problem"? I don't see what "the problem" is supposed to mean. Of which object do you want to find the characteristic values and ranks? Have you checked your definition of $phi$?
$endgroup$
– James
6 hours ago




$begingroup$
What is $lambda$? What do you mean by "solve the problem"? I don't see what "the problem" is supposed to mean. Of which object do you want to find the characteristic values and ranks? Have you checked your definition of $phi$?
$endgroup$
– James
6 hours ago












$begingroup$
My apologies, $lambda$ is an arbitrary constant. In essence I want to obtain an expression of $phi(x)$ which does not contain a function of $s$, which the initial integral equation has.
$endgroup$
– LightningStrike
6 hours ago




$begingroup$
My apologies, $lambda$ is an arbitrary constant. In essence I want to obtain an expression of $phi(x)$ which does not contain a function of $s$, which the initial integral equation has.
$endgroup$
– LightningStrike
6 hours ago










4 Answers
4






active

oldest

votes


















4












$begingroup$

Relabelling the dummy variable $xmapsto s$ on the LHS of your final equation, $$int_0^1phi(s),ds-lambdaint_0^1phi(s),ds=frac12\implies int_0^1phi(s),ds=frac12(1-lambda)$$



Thus $$phi(x)=x+fraclambda2(1-lambda)$$






share|cite|improve this answer









$endgroup$




















    2












    $begingroup$

    Note $int_0^1phi(s)ds$ is a constant say $a$. Your functional equation (FE) can be rewritten as: $$phi(x)=x+alambda$$
    Putting into FE yields:




    $$x+alambda=x+lambdaint_0^1(s+alambda )ds iff alambda=lambdabig(frac12+lambda abig)$$
    If $lambda=0$ then $phi(x)=x$



    if $lambdane 1$ $a=frac12+lambda aiff ( 1-lambda)a=frac12iff a=frac12-2lambda$ and then $phi(x)=x+fraclambda2-2lambda$



    If $lambda=1$ there won’t besuch $phi$.







    share|cite|improve this answer









    $endgroup$




















      0












      $begingroup$

      If you are after finding $phi(x)$, one approach that comes to mind is to assume it is smooth enough to have a normally convergent (so we can interchange series summation and integration) Taylor expansion on $[0, 1]$:
      $$
      phi(x) = sum_n geq 0 a_n x^n.
      $$

      Substituting it into your equation, we get:
      $$
      sum_n geq 0 a_n x^n = x + lambda sum_n geq 0a_n over n+1.
      $$

      Matching up the coefficients of the difference powers of $x$, we get:
      $$
      a_n = 0 quad mbox for n geq 2,
      $$

      $$
      a_1 = 1,
      $$

      and
      $$
      a_0 = lambda left(a_0 + a_1 over 2right).
      $$

      This gives a relationship between $a_0$ and $lambda$.






      share|cite|improve this answer









      $endgroup$




















        0












        $begingroup$

        Note that since $lambdaint_0^1 phi(s),ds$ is a constant (with respect to $x$), then we can write$$phi(x)=x+a$$and by substitution we conclude that $$x+a=x+lambdaint _0^1x+adximplies\a=lambda(1over 2+a)implies\a=lambdaover 2-2lambda$$ and we obtain$$phi(x)=x+lambdaover 2-2lambdaquad,quad lambdane 1$$The case $lambda=1$ leads to no solution.






        share|cite|improve this answer









        $endgroup$












          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3162106%2fa-standard-integral-equation%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          4 Answers
          4






          active

          oldest

          votes








          4 Answers
          4






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          4












          $begingroup$

          Relabelling the dummy variable $xmapsto s$ on the LHS of your final equation, $$int_0^1phi(s),ds-lambdaint_0^1phi(s),ds=frac12\implies int_0^1phi(s),ds=frac12(1-lambda)$$



          Thus $$phi(x)=x+fraclambda2(1-lambda)$$






          share|cite|improve this answer









          $endgroup$

















            4












            $begingroup$

            Relabelling the dummy variable $xmapsto s$ on the LHS of your final equation, $$int_0^1phi(s),ds-lambdaint_0^1phi(s),ds=frac12\implies int_0^1phi(s),ds=frac12(1-lambda)$$



            Thus $$phi(x)=x+fraclambda2(1-lambda)$$






            share|cite|improve this answer









            $endgroup$















              4












              4








              4





              $begingroup$

              Relabelling the dummy variable $xmapsto s$ on the LHS of your final equation, $$int_0^1phi(s),ds-lambdaint_0^1phi(s),ds=frac12\implies int_0^1phi(s),ds=frac12(1-lambda)$$



              Thus $$phi(x)=x+fraclambda2(1-lambda)$$






              share|cite|improve this answer









              $endgroup$



              Relabelling the dummy variable $xmapsto s$ on the LHS of your final equation, $$int_0^1phi(s),ds-lambdaint_0^1phi(s),ds=frac12\implies int_0^1phi(s),ds=frac12(1-lambda)$$



              Thus $$phi(x)=x+fraclambda2(1-lambda)$$







              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered 6 hours ago









              John DoeJohn Doe

              11.3k11239




              11.3k11239





















                  2












                  $begingroup$

                  Note $int_0^1phi(s)ds$ is a constant say $a$. Your functional equation (FE) can be rewritten as: $$phi(x)=x+alambda$$
                  Putting into FE yields:




                  $$x+alambda=x+lambdaint_0^1(s+alambda )ds iff alambda=lambdabig(frac12+lambda abig)$$
                  If $lambda=0$ then $phi(x)=x$



                  if $lambdane 1$ $a=frac12+lambda aiff ( 1-lambda)a=frac12iff a=frac12-2lambda$ and then $phi(x)=x+fraclambda2-2lambda$



                  If $lambda=1$ there won’t besuch $phi$.







                  share|cite|improve this answer









                  $endgroup$

















                    2












                    $begingroup$

                    Note $int_0^1phi(s)ds$ is a constant say $a$. Your functional equation (FE) can be rewritten as: $$phi(x)=x+alambda$$
                    Putting into FE yields:




                    $$x+alambda=x+lambdaint_0^1(s+alambda )ds iff alambda=lambdabig(frac12+lambda abig)$$
                    If $lambda=0$ then $phi(x)=x$



                    if $lambdane 1$ $a=frac12+lambda aiff ( 1-lambda)a=frac12iff a=frac12-2lambda$ and then $phi(x)=x+fraclambda2-2lambda$



                    If $lambda=1$ there won’t besuch $phi$.







                    share|cite|improve this answer









                    $endgroup$















                      2












                      2








                      2





                      $begingroup$

                      Note $int_0^1phi(s)ds$ is a constant say $a$. Your functional equation (FE) can be rewritten as: $$phi(x)=x+alambda$$
                      Putting into FE yields:




                      $$x+alambda=x+lambdaint_0^1(s+alambda )ds iff alambda=lambdabig(frac12+lambda abig)$$
                      If $lambda=0$ then $phi(x)=x$



                      if $lambdane 1$ $a=frac12+lambda aiff ( 1-lambda)a=frac12iff a=frac12-2lambda$ and then $phi(x)=x+fraclambda2-2lambda$



                      If $lambda=1$ there won’t besuch $phi$.







                      share|cite|improve this answer









                      $endgroup$



                      Note $int_0^1phi(s)ds$ is a constant say $a$. Your functional equation (FE) can be rewritten as: $$phi(x)=x+alambda$$
                      Putting into FE yields:




                      $$x+alambda=x+lambdaint_0^1(s+alambda )ds iff alambda=lambdabig(frac12+lambda abig)$$
                      If $lambda=0$ then $phi(x)=x$



                      if $lambdane 1$ $a=frac12+lambda aiff ( 1-lambda)a=frac12iff a=frac12-2lambda$ and then $phi(x)=x+fraclambda2-2lambda$



                      If $lambda=1$ there won’t besuch $phi$.








                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered 6 hours ago









                      HAMIDINE SOUMAREHAMIDINE SOUMARE

                      1,478211




                      1,478211





















                          0












                          $begingroup$

                          If you are after finding $phi(x)$, one approach that comes to mind is to assume it is smooth enough to have a normally convergent (so we can interchange series summation and integration) Taylor expansion on $[0, 1]$:
                          $$
                          phi(x) = sum_n geq 0 a_n x^n.
                          $$

                          Substituting it into your equation, we get:
                          $$
                          sum_n geq 0 a_n x^n = x + lambda sum_n geq 0a_n over n+1.
                          $$

                          Matching up the coefficients of the difference powers of $x$, we get:
                          $$
                          a_n = 0 quad mbox for n geq 2,
                          $$

                          $$
                          a_1 = 1,
                          $$

                          and
                          $$
                          a_0 = lambda left(a_0 + a_1 over 2right).
                          $$

                          This gives a relationship between $a_0$ and $lambda$.






                          share|cite|improve this answer









                          $endgroup$

















                            0












                            $begingroup$

                            If you are after finding $phi(x)$, one approach that comes to mind is to assume it is smooth enough to have a normally convergent (so we can interchange series summation and integration) Taylor expansion on $[0, 1]$:
                            $$
                            phi(x) = sum_n geq 0 a_n x^n.
                            $$

                            Substituting it into your equation, we get:
                            $$
                            sum_n geq 0 a_n x^n = x + lambda sum_n geq 0a_n over n+1.
                            $$

                            Matching up the coefficients of the difference powers of $x$, we get:
                            $$
                            a_n = 0 quad mbox for n geq 2,
                            $$

                            $$
                            a_1 = 1,
                            $$

                            and
                            $$
                            a_0 = lambda left(a_0 + a_1 over 2right).
                            $$

                            This gives a relationship between $a_0$ and $lambda$.






                            share|cite|improve this answer









                            $endgroup$















                              0












                              0








                              0





                              $begingroup$

                              If you are after finding $phi(x)$, one approach that comes to mind is to assume it is smooth enough to have a normally convergent (so we can interchange series summation and integration) Taylor expansion on $[0, 1]$:
                              $$
                              phi(x) = sum_n geq 0 a_n x^n.
                              $$

                              Substituting it into your equation, we get:
                              $$
                              sum_n geq 0 a_n x^n = x + lambda sum_n geq 0a_n over n+1.
                              $$

                              Matching up the coefficients of the difference powers of $x$, we get:
                              $$
                              a_n = 0 quad mbox for n geq 2,
                              $$

                              $$
                              a_1 = 1,
                              $$

                              and
                              $$
                              a_0 = lambda left(a_0 + a_1 over 2right).
                              $$

                              This gives a relationship between $a_0$ and $lambda$.






                              share|cite|improve this answer









                              $endgroup$



                              If you are after finding $phi(x)$, one approach that comes to mind is to assume it is smooth enough to have a normally convergent (so we can interchange series summation and integration) Taylor expansion on $[0, 1]$:
                              $$
                              phi(x) = sum_n geq 0 a_n x^n.
                              $$

                              Substituting it into your equation, we get:
                              $$
                              sum_n geq 0 a_n x^n = x + lambda sum_n geq 0a_n over n+1.
                              $$

                              Matching up the coefficients of the difference powers of $x$, we get:
                              $$
                              a_n = 0 quad mbox for n geq 2,
                              $$

                              $$
                              a_1 = 1,
                              $$

                              and
                              $$
                              a_0 = lambda left(a_0 + a_1 over 2right).
                              $$

                              This gives a relationship between $a_0$ and $lambda$.







                              share|cite|improve this answer












                              share|cite|improve this answer



                              share|cite|improve this answer










                              answered 6 hours ago









                              avsavs

                              3,749514




                              3,749514





















                                  0












                                  $begingroup$

                                  Note that since $lambdaint_0^1 phi(s),ds$ is a constant (with respect to $x$), then we can write$$phi(x)=x+a$$and by substitution we conclude that $$x+a=x+lambdaint _0^1x+adximplies\a=lambda(1over 2+a)implies\a=lambdaover 2-2lambda$$ and we obtain$$phi(x)=x+lambdaover 2-2lambdaquad,quad lambdane 1$$The case $lambda=1$ leads to no solution.






                                  share|cite|improve this answer









                                  $endgroup$

















                                    0












                                    $begingroup$

                                    Note that since $lambdaint_0^1 phi(s),ds$ is a constant (with respect to $x$), then we can write$$phi(x)=x+a$$and by substitution we conclude that $$x+a=x+lambdaint _0^1x+adximplies\a=lambda(1over 2+a)implies\a=lambdaover 2-2lambda$$ and we obtain$$phi(x)=x+lambdaover 2-2lambdaquad,quad lambdane 1$$The case $lambda=1$ leads to no solution.






                                    share|cite|improve this answer









                                    $endgroup$















                                      0












                                      0








                                      0





                                      $begingroup$

                                      Note that since $lambdaint_0^1 phi(s),ds$ is a constant (with respect to $x$), then we can write$$phi(x)=x+a$$and by substitution we conclude that $$x+a=x+lambdaint _0^1x+adximplies\a=lambda(1over 2+a)implies\a=lambdaover 2-2lambda$$ and we obtain$$phi(x)=x+lambdaover 2-2lambdaquad,quad lambdane 1$$The case $lambda=1$ leads to no solution.






                                      share|cite|improve this answer









                                      $endgroup$



                                      Note that since $lambdaint_0^1 phi(s),ds$ is a constant (with respect to $x$), then we can write$$phi(x)=x+a$$and by substitution we conclude that $$x+a=x+lambdaint _0^1x+adximplies\a=lambda(1over 2+a)implies\a=lambdaover 2-2lambda$$ and we obtain$$phi(x)=x+lambdaover 2-2lambdaquad,quad lambdane 1$$The case $lambda=1$ leads to no solution.







                                      share|cite|improve this answer












                                      share|cite|improve this answer



                                      share|cite|improve this answer










                                      answered 6 hours ago









                                      Mostafa AyazMostafa Ayaz

                                      17.6k31039




                                      17.6k31039



























                                          draft saved

                                          draft discarded
















































                                          Thanks for contributing an answer to Mathematics Stack Exchange!


                                          • Please be sure to answer the question. Provide details and share your research!

                                          But avoid


                                          • Asking for help, clarification, or responding to other answers.

                                          • Making statements based on opinion; back them up with references or personal experience.

                                          Use MathJax to format equations. MathJax reference.


                                          To learn more, see our tips on writing great answers.




                                          draft saved


                                          draft discarded














                                          StackExchange.ready(
                                          function ()
                                          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3162106%2fa-standard-integral-equation%23new-answer', 'question_page');

                                          );

                                          Post as a guest















                                          Required, but never shown





















































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown

































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown







                                          Popular posts from this blog

                                          Reverse int within the 32-bit signed integer range: [−2^31, 2^31 − 1]Combining two 32-bit integers into one 64-bit integerDetermine if an int is within rangeLossy packing 32 bit integer to 16 bitComputing the square root of a 64-bit integerKeeping integer addition within boundsSafe multiplication of two 64-bit signed integersLeetcode 10: Regular Expression MatchingSigned integer-to-ascii x86_64 assembler macroReverse the digits of an Integer“Add two numbers given in reverse order from a linked list”

                                          Category:Fedor von Bock Media in category "Fedor von Bock"Navigation menuUpload mediaISNI: 0000 0000 5511 3417VIAF ID: 24712551GND ID: 119294796Library of Congress authority ID: n96068363BnF ID: 12534305fSUDOC authorities ID: 034604189Open Library ID: OL338253ANKCR AUT ID: jn19990000869National Library of Israel ID: 000514068National Thesaurus for Author Names ID: 341574317ReasonatorScholiaStatistics

                                          Kiel Indholdsfortegnelse Historie | Transport og færgeforbindelser | Sejlsport og anden sport | Kultur | Kendte personer fra Kiel | Noter | Litteratur | Eksterne henvisninger | Navigationsmenuwww.kiel.de54°19′31″N 10°8′26″Ø / 54.32528°N 10.14056°Ø / 54.32528; 10.14056Oberbürgermeister Dr. Ulf Kämpferwww.statistik-nord.deDen danske Stats StatistikKiels hjemmesiderrrWorldCat312794080n790547494030481-4