A workplace installs custom certificates on personal devices, can this be used to decrypt HTTPS traffic?Corporate computers have own corporation's cert as trusted CA; should I consider all traffic compromised?Is it possible for corporation to intercept and decrypt SSL/TLS traffic?ECDHE_RSA and gmailWhy not use client certificates for premaster key generationIt is possible to decrypt HTTPS traffic when a man in the middle proxy is already in place?Details of TLS certificate verificationUnderstanding SSL man-in-the-middle and its limitationsCan a wifi router decrypt SSL/TLS information?Doubts about tls handshakeDecrypt TLS trafficStorage of certificates and keys in hardware security modules (Use-case TLS)Publishing a private key used for HTTPS certificates, is it ever OK?

Simple image editor tool to draw a simple box/rectangle in an existing image

Can a Gentile theist be saved?

Latex for-and in equation

Is there a good way to store credentials outside of a password manager?

What is the term when two people sing in harmony, but they aren't singing the same notes?

Can I use my Chinese passport to enter China after I acquired another citizenship?

Why are on-board computers allowed to change controls without notifying the pilots?

Proof of Lemma: Every integer can be written as a product of primes

Can somebody explain Brexit in a few child-proof sentences?

What will be the benefits of Brexit?

How to prevent YouTube from showing already watched videos?

How to deal with or prevent idle in the test team?

Calculating the number of days between 2 dates in Excel

Visiting the UK as unmarried couple

My boss asked me to take a one-day class, then signs it up as a day off

Are taller landing gear bad for aircraft, particulary large airliners?

How to interpret the phrase "t’en a fait voir à toi"?

Java - What do constructor type arguments mean when placed *before* the type?

How to check participants in at events?

Installing PowerShell on 32-bit Kali OS fails

Can I rely on these GitHub repository files?

Why is delta-v is the most useful quantity for planning space travel?

Adding empty element to declared container without declaring type of element

Are Warlocks Arcane or Divine?



A workplace installs custom certificates on personal devices, can this be used to decrypt HTTPS traffic?


Corporate computers have own corporation's cert as trusted CA; should I consider all traffic compromised?Is it possible for corporation to intercept and decrypt SSL/TLS traffic?ECDHE_RSA and gmailWhy not use client certificates for premaster key generationIt is possible to decrypt HTTPS traffic when a man in the middle proxy is already in place?Details of TLS certificate verificationUnderstanding SSL man-in-the-middle and its limitationsCan a wifi router decrypt SSL/TLS information?Doubts about tls handshakeDecrypt TLS trafficStorage of certificates and keys in hardware security modules (Use-case TLS)Publishing a private key used for HTTPS certificates, is it ever OK?













2















So another engineer buddy of mine and I were having a drink the other night. He mentioned that you're allowed to use personal devices on the office wifi, but that they install a custom certificate so they can MITM your traffic.



Neither of us are security experts, but I know a little bit about the HTTP/TLS handshake protocol to question whether this is the case.



As far as I understand it (please forgive me if I butcher it):



  • Client-Server initiate handshake, and exchange certificate from signing authority + public key + random string.


  • Public key is used to decrypt a random string of characters, which is fed into a hashing algorithm and reveals a private key.


  • Private key is used to decrypt the traffic that follows


We were reading this article, about how companies sometimes install certificates to decrypt outgoing traffic.



If the blog-post case is true, then how does this work? Would they get the private key using their trusted-root all uses certificate? Assuming that works, that covers the windows use-case, but what about other platforms like OSX/iOS, linux, BSD etc.?



Are there other approaches that I'm not considering, where a certificate install could be used to MitM?










share|improve this question






















  • What certificates did he install? Was it a root CA certificate? It could have just been a certificate to authenticate the radius server which is used to authorize access to the wifi. Different certificates do different tasks.

    – Daisetsu
    2 hours ago











  • I don't think he installed anything. I think his workplace was being pretty transparent about what the cert is for - we're just trying to understand if it's possible or if they're making an empty threat.

    – Scuba Steve
    2 hours ago











  • We both honestly don't care about the implications, we're really just trying to understand the scenario, because we're nerds.

    – Scuba Steve
    2 hours ago






  • 1





    Oh, I see. Yes that is possible and it's not rare. They're called TLS interception proxies.

    – Daisetsu
    2 hours ago






  • 1





    tlseminar.github.io/tls-interception look at the section titled "How SSL/TLS interception works"

    – Daisetsu
    2 hours ago















2















So another engineer buddy of mine and I were having a drink the other night. He mentioned that you're allowed to use personal devices on the office wifi, but that they install a custom certificate so they can MITM your traffic.



Neither of us are security experts, but I know a little bit about the HTTP/TLS handshake protocol to question whether this is the case.



As far as I understand it (please forgive me if I butcher it):



  • Client-Server initiate handshake, and exchange certificate from signing authority + public key + random string.


  • Public key is used to decrypt a random string of characters, which is fed into a hashing algorithm and reveals a private key.


  • Private key is used to decrypt the traffic that follows


We were reading this article, about how companies sometimes install certificates to decrypt outgoing traffic.



If the blog-post case is true, then how does this work? Would they get the private key using their trusted-root all uses certificate? Assuming that works, that covers the windows use-case, but what about other platforms like OSX/iOS, linux, BSD etc.?



Are there other approaches that I'm not considering, where a certificate install could be used to MitM?










share|improve this question






















  • What certificates did he install? Was it a root CA certificate? It could have just been a certificate to authenticate the radius server which is used to authorize access to the wifi. Different certificates do different tasks.

    – Daisetsu
    2 hours ago











  • I don't think he installed anything. I think his workplace was being pretty transparent about what the cert is for - we're just trying to understand if it's possible or if they're making an empty threat.

    – Scuba Steve
    2 hours ago











  • We both honestly don't care about the implications, we're really just trying to understand the scenario, because we're nerds.

    – Scuba Steve
    2 hours ago






  • 1





    Oh, I see. Yes that is possible and it's not rare. They're called TLS interception proxies.

    – Daisetsu
    2 hours ago






  • 1





    tlseminar.github.io/tls-interception look at the section titled "How SSL/TLS interception works"

    – Daisetsu
    2 hours ago













2












2








2








So another engineer buddy of mine and I were having a drink the other night. He mentioned that you're allowed to use personal devices on the office wifi, but that they install a custom certificate so they can MITM your traffic.



Neither of us are security experts, but I know a little bit about the HTTP/TLS handshake protocol to question whether this is the case.



As far as I understand it (please forgive me if I butcher it):



  • Client-Server initiate handshake, and exchange certificate from signing authority + public key + random string.


  • Public key is used to decrypt a random string of characters, which is fed into a hashing algorithm and reveals a private key.


  • Private key is used to decrypt the traffic that follows


We were reading this article, about how companies sometimes install certificates to decrypt outgoing traffic.



If the blog-post case is true, then how does this work? Would they get the private key using their trusted-root all uses certificate? Assuming that works, that covers the windows use-case, but what about other platforms like OSX/iOS, linux, BSD etc.?



Are there other approaches that I'm not considering, where a certificate install could be used to MitM?










share|improve this question














So another engineer buddy of mine and I were having a drink the other night. He mentioned that you're allowed to use personal devices on the office wifi, but that they install a custom certificate so they can MITM your traffic.



Neither of us are security experts, but I know a little bit about the HTTP/TLS handshake protocol to question whether this is the case.



As far as I understand it (please forgive me if I butcher it):



  • Client-Server initiate handshake, and exchange certificate from signing authority + public key + random string.


  • Public key is used to decrypt a random string of characters, which is fed into a hashing algorithm and reveals a private key.


  • Private key is used to decrypt the traffic that follows


We were reading this article, about how companies sometimes install certificates to decrypt outgoing traffic.



If the blog-post case is true, then how does this work? Would they get the private key using their trusted-root all uses certificate? Assuming that works, that covers the windows use-case, but what about other platforms like OSX/iOS, linux, BSD etc.?



Are there other approaches that I'm not considering, where a certificate install could be used to MitM?







tls certificates






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked 2 hours ago









Scuba SteveScuba Steve

1385




1385












  • What certificates did he install? Was it a root CA certificate? It could have just been a certificate to authenticate the radius server which is used to authorize access to the wifi. Different certificates do different tasks.

    – Daisetsu
    2 hours ago











  • I don't think he installed anything. I think his workplace was being pretty transparent about what the cert is for - we're just trying to understand if it's possible or if they're making an empty threat.

    – Scuba Steve
    2 hours ago











  • We both honestly don't care about the implications, we're really just trying to understand the scenario, because we're nerds.

    – Scuba Steve
    2 hours ago






  • 1





    Oh, I see. Yes that is possible and it's not rare. They're called TLS interception proxies.

    – Daisetsu
    2 hours ago






  • 1





    tlseminar.github.io/tls-interception look at the section titled "How SSL/TLS interception works"

    – Daisetsu
    2 hours ago

















  • What certificates did he install? Was it a root CA certificate? It could have just been a certificate to authenticate the radius server which is used to authorize access to the wifi. Different certificates do different tasks.

    – Daisetsu
    2 hours ago











  • I don't think he installed anything. I think his workplace was being pretty transparent about what the cert is for - we're just trying to understand if it's possible or if they're making an empty threat.

    – Scuba Steve
    2 hours ago











  • We both honestly don't care about the implications, we're really just trying to understand the scenario, because we're nerds.

    – Scuba Steve
    2 hours ago






  • 1





    Oh, I see. Yes that is possible and it's not rare. They're called TLS interception proxies.

    – Daisetsu
    2 hours ago






  • 1





    tlseminar.github.io/tls-interception look at the section titled "How SSL/TLS interception works"

    – Daisetsu
    2 hours ago
















What certificates did he install? Was it a root CA certificate? It could have just been a certificate to authenticate the radius server which is used to authorize access to the wifi. Different certificates do different tasks.

– Daisetsu
2 hours ago





What certificates did he install? Was it a root CA certificate? It could have just been a certificate to authenticate the radius server which is used to authorize access to the wifi. Different certificates do different tasks.

– Daisetsu
2 hours ago













I don't think he installed anything. I think his workplace was being pretty transparent about what the cert is for - we're just trying to understand if it's possible or if they're making an empty threat.

– Scuba Steve
2 hours ago





I don't think he installed anything. I think his workplace was being pretty transparent about what the cert is for - we're just trying to understand if it's possible or if they're making an empty threat.

– Scuba Steve
2 hours ago













We both honestly don't care about the implications, we're really just trying to understand the scenario, because we're nerds.

– Scuba Steve
2 hours ago





We both honestly don't care about the implications, we're really just trying to understand the scenario, because we're nerds.

– Scuba Steve
2 hours ago




1




1





Oh, I see. Yes that is possible and it's not rare. They're called TLS interception proxies.

– Daisetsu
2 hours ago





Oh, I see. Yes that is possible and it's not rare. They're called TLS interception proxies.

– Daisetsu
2 hours ago




1




1





tlseminar.github.io/tls-interception look at the section titled "How SSL/TLS interception works"

– Daisetsu
2 hours ago





tlseminar.github.io/tls-interception look at the section titled "How SSL/TLS interception works"

– Daisetsu
2 hours ago










1 Answer
1






active

oldest

votes


















5














Yes, they can MitM the traffic this way, using an internal certificate authority. There are two primary ways in which the MitM can work.



The first is to simply turn the edge gateway into a proxy, whereby TLS connections are made from the gateway to the server, and the gateway then generates server certificates on the fly from an internal CA in order to impersonate the remote server. Your system trusts the CA, so it trusts the server certificate.



The second is a slightly different take on the first. The gateway proxies the traffic similarly to the first method, except it only advertises static RSA cipher suites to the remote server. The reason for doing this is performance. With a static RSA key exchange (i.e. not Diffie-Hellman) the gateway can split the handshake as before in order to provide the client with a certificate generated via the internal CA, but instead of decrypting the content on the gateway and then re-encrypting it before proxying, it simply passes the same session key between the client and server. This way the gateway only has to decrypt the traffic once, using the captured session key, and never needs to re-encrypt it in order to proxy the traffic between client and server. This trick no longer works in TLS 1.3 as static RSA key exchange was removed.



Generally speaking this kind of TLS inspection is fairly commonplace in large organisations, particularly financials. Deploying it on BYOD devices is somewhat common, although you should consider the privacy and security implications that might arise from installing your company's internal CA certificate on your device. You need to ask yourself whether you trust that your IT security team is likely to be able to protect the signing keys, because if not then your device is liable to be MitM'ed by an attacker.






share|improve this answer























  • " You need to ask yourself whether you trust that your IT security team is likely to be able to protect the signing keys." Yes exactly, I had the same thought myself.

    – Scuba Steve
    2 hours ago






  • 2





    As an aside, I once assessed a TLS inspection gateway product which re-signed all HTTPS connections using the internal CA, even if the remote certificate was invalid. This allowed for a particularly effective phishing campaign in which we impersonated the company intranet and had our phishing domain automagically signed by the company CA. I suggest that you check for this vulnerability yourself by trying to visit a site which you know has an invalid (e.g. expired, or incorrect domain) certificate and seeing if the connection succeeds.

    – Polynomial
    2 hours ago












  • Amazing! I feel like pen-testing is a missed calling.

    – Scuba Steve
    2 hours ago






  • 1





    FWIW even if 1.3 would allow static-RSA, it changes the key derivation to include the whole handshake (not just premaster+nonces) and MITM couldn't make those equal. This is similar to rfc7627 which fixes 'triple handshake' for 1.2, except that is optional and so MITM can force it off.

    – dave_thompson_085
    1 hour ago











Your Answer








StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "162"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fsecurity.stackexchange.com%2fquestions%2f206103%2fa-workplace-installs-custom-certificates-on-personal-devices-can-this-be-used-t%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









5














Yes, they can MitM the traffic this way, using an internal certificate authority. There are two primary ways in which the MitM can work.



The first is to simply turn the edge gateway into a proxy, whereby TLS connections are made from the gateway to the server, and the gateway then generates server certificates on the fly from an internal CA in order to impersonate the remote server. Your system trusts the CA, so it trusts the server certificate.



The second is a slightly different take on the first. The gateway proxies the traffic similarly to the first method, except it only advertises static RSA cipher suites to the remote server. The reason for doing this is performance. With a static RSA key exchange (i.e. not Diffie-Hellman) the gateway can split the handshake as before in order to provide the client with a certificate generated via the internal CA, but instead of decrypting the content on the gateway and then re-encrypting it before proxying, it simply passes the same session key between the client and server. This way the gateway only has to decrypt the traffic once, using the captured session key, and never needs to re-encrypt it in order to proxy the traffic between client and server. This trick no longer works in TLS 1.3 as static RSA key exchange was removed.



Generally speaking this kind of TLS inspection is fairly commonplace in large organisations, particularly financials. Deploying it on BYOD devices is somewhat common, although you should consider the privacy and security implications that might arise from installing your company's internal CA certificate on your device. You need to ask yourself whether you trust that your IT security team is likely to be able to protect the signing keys, because if not then your device is liable to be MitM'ed by an attacker.






share|improve this answer























  • " You need to ask yourself whether you trust that your IT security team is likely to be able to protect the signing keys." Yes exactly, I had the same thought myself.

    – Scuba Steve
    2 hours ago






  • 2





    As an aside, I once assessed a TLS inspection gateway product which re-signed all HTTPS connections using the internal CA, even if the remote certificate was invalid. This allowed for a particularly effective phishing campaign in which we impersonated the company intranet and had our phishing domain automagically signed by the company CA. I suggest that you check for this vulnerability yourself by trying to visit a site which you know has an invalid (e.g. expired, or incorrect domain) certificate and seeing if the connection succeeds.

    – Polynomial
    2 hours ago












  • Amazing! I feel like pen-testing is a missed calling.

    – Scuba Steve
    2 hours ago






  • 1





    FWIW even if 1.3 would allow static-RSA, it changes the key derivation to include the whole handshake (not just premaster+nonces) and MITM couldn't make those equal. This is similar to rfc7627 which fixes 'triple handshake' for 1.2, except that is optional and so MITM can force it off.

    – dave_thompson_085
    1 hour ago
















5














Yes, they can MitM the traffic this way, using an internal certificate authority. There are two primary ways in which the MitM can work.



The first is to simply turn the edge gateway into a proxy, whereby TLS connections are made from the gateway to the server, and the gateway then generates server certificates on the fly from an internal CA in order to impersonate the remote server. Your system trusts the CA, so it trusts the server certificate.



The second is a slightly different take on the first. The gateway proxies the traffic similarly to the first method, except it only advertises static RSA cipher suites to the remote server. The reason for doing this is performance. With a static RSA key exchange (i.e. not Diffie-Hellman) the gateway can split the handshake as before in order to provide the client with a certificate generated via the internal CA, but instead of decrypting the content on the gateway and then re-encrypting it before proxying, it simply passes the same session key between the client and server. This way the gateway only has to decrypt the traffic once, using the captured session key, and never needs to re-encrypt it in order to proxy the traffic between client and server. This trick no longer works in TLS 1.3 as static RSA key exchange was removed.



Generally speaking this kind of TLS inspection is fairly commonplace in large organisations, particularly financials. Deploying it on BYOD devices is somewhat common, although you should consider the privacy and security implications that might arise from installing your company's internal CA certificate on your device. You need to ask yourself whether you trust that your IT security team is likely to be able to protect the signing keys, because if not then your device is liable to be MitM'ed by an attacker.






share|improve this answer























  • " You need to ask yourself whether you trust that your IT security team is likely to be able to protect the signing keys." Yes exactly, I had the same thought myself.

    – Scuba Steve
    2 hours ago






  • 2





    As an aside, I once assessed a TLS inspection gateway product which re-signed all HTTPS connections using the internal CA, even if the remote certificate was invalid. This allowed for a particularly effective phishing campaign in which we impersonated the company intranet and had our phishing domain automagically signed by the company CA. I suggest that you check for this vulnerability yourself by trying to visit a site which you know has an invalid (e.g. expired, or incorrect domain) certificate and seeing if the connection succeeds.

    – Polynomial
    2 hours ago












  • Amazing! I feel like pen-testing is a missed calling.

    – Scuba Steve
    2 hours ago






  • 1





    FWIW even if 1.3 would allow static-RSA, it changes the key derivation to include the whole handshake (not just premaster+nonces) and MITM couldn't make those equal. This is similar to rfc7627 which fixes 'triple handshake' for 1.2, except that is optional and so MITM can force it off.

    – dave_thompson_085
    1 hour ago














5












5








5







Yes, they can MitM the traffic this way, using an internal certificate authority. There are two primary ways in which the MitM can work.



The first is to simply turn the edge gateway into a proxy, whereby TLS connections are made from the gateway to the server, and the gateway then generates server certificates on the fly from an internal CA in order to impersonate the remote server. Your system trusts the CA, so it trusts the server certificate.



The second is a slightly different take on the first. The gateway proxies the traffic similarly to the first method, except it only advertises static RSA cipher suites to the remote server. The reason for doing this is performance. With a static RSA key exchange (i.e. not Diffie-Hellman) the gateway can split the handshake as before in order to provide the client with a certificate generated via the internal CA, but instead of decrypting the content on the gateway and then re-encrypting it before proxying, it simply passes the same session key between the client and server. This way the gateway only has to decrypt the traffic once, using the captured session key, and never needs to re-encrypt it in order to proxy the traffic between client and server. This trick no longer works in TLS 1.3 as static RSA key exchange was removed.



Generally speaking this kind of TLS inspection is fairly commonplace in large organisations, particularly financials. Deploying it on BYOD devices is somewhat common, although you should consider the privacy and security implications that might arise from installing your company's internal CA certificate on your device. You need to ask yourself whether you trust that your IT security team is likely to be able to protect the signing keys, because if not then your device is liable to be MitM'ed by an attacker.






share|improve this answer













Yes, they can MitM the traffic this way, using an internal certificate authority. There are two primary ways in which the MitM can work.



The first is to simply turn the edge gateway into a proxy, whereby TLS connections are made from the gateway to the server, and the gateway then generates server certificates on the fly from an internal CA in order to impersonate the remote server. Your system trusts the CA, so it trusts the server certificate.



The second is a slightly different take on the first. The gateway proxies the traffic similarly to the first method, except it only advertises static RSA cipher suites to the remote server. The reason for doing this is performance. With a static RSA key exchange (i.e. not Diffie-Hellman) the gateway can split the handshake as before in order to provide the client with a certificate generated via the internal CA, but instead of decrypting the content on the gateway and then re-encrypting it before proxying, it simply passes the same session key between the client and server. This way the gateway only has to decrypt the traffic once, using the captured session key, and never needs to re-encrypt it in order to proxy the traffic between client and server. This trick no longer works in TLS 1.3 as static RSA key exchange was removed.



Generally speaking this kind of TLS inspection is fairly commonplace in large organisations, particularly financials. Deploying it on BYOD devices is somewhat common, although you should consider the privacy and security implications that might arise from installing your company's internal CA certificate on your device. You need to ask yourself whether you trust that your IT security team is likely to be able to protect the signing keys, because if not then your device is liable to be MitM'ed by an attacker.







share|improve this answer












share|improve this answer



share|improve this answer










answered 2 hours ago









PolynomialPolynomial

101k31248341




101k31248341












  • " You need to ask yourself whether you trust that your IT security team is likely to be able to protect the signing keys." Yes exactly, I had the same thought myself.

    – Scuba Steve
    2 hours ago






  • 2





    As an aside, I once assessed a TLS inspection gateway product which re-signed all HTTPS connections using the internal CA, even if the remote certificate was invalid. This allowed for a particularly effective phishing campaign in which we impersonated the company intranet and had our phishing domain automagically signed by the company CA. I suggest that you check for this vulnerability yourself by trying to visit a site which you know has an invalid (e.g. expired, or incorrect domain) certificate and seeing if the connection succeeds.

    – Polynomial
    2 hours ago












  • Amazing! I feel like pen-testing is a missed calling.

    – Scuba Steve
    2 hours ago






  • 1





    FWIW even if 1.3 would allow static-RSA, it changes the key derivation to include the whole handshake (not just premaster+nonces) and MITM couldn't make those equal. This is similar to rfc7627 which fixes 'triple handshake' for 1.2, except that is optional and so MITM can force it off.

    – dave_thompson_085
    1 hour ago


















  • " You need to ask yourself whether you trust that your IT security team is likely to be able to protect the signing keys." Yes exactly, I had the same thought myself.

    – Scuba Steve
    2 hours ago






  • 2





    As an aside, I once assessed a TLS inspection gateway product which re-signed all HTTPS connections using the internal CA, even if the remote certificate was invalid. This allowed for a particularly effective phishing campaign in which we impersonated the company intranet and had our phishing domain automagically signed by the company CA. I suggest that you check for this vulnerability yourself by trying to visit a site which you know has an invalid (e.g. expired, or incorrect domain) certificate and seeing if the connection succeeds.

    – Polynomial
    2 hours ago












  • Amazing! I feel like pen-testing is a missed calling.

    – Scuba Steve
    2 hours ago






  • 1





    FWIW even if 1.3 would allow static-RSA, it changes the key derivation to include the whole handshake (not just premaster+nonces) and MITM couldn't make those equal. This is similar to rfc7627 which fixes 'triple handshake' for 1.2, except that is optional and so MITM can force it off.

    – dave_thompson_085
    1 hour ago

















" You need to ask yourself whether you trust that your IT security team is likely to be able to protect the signing keys." Yes exactly, I had the same thought myself.

– Scuba Steve
2 hours ago





" You need to ask yourself whether you trust that your IT security team is likely to be able to protect the signing keys." Yes exactly, I had the same thought myself.

– Scuba Steve
2 hours ago




2




2





As an aside, I once assessed a TLS inspection gateway product which re-signed all HTTPS connections using the internal CA, even if the remote certificate was invalid. This allowed for a particularly effective phishing campaign in which we impersonated the company intranet and had our phishing domain automagically signed by the company CA. I suggest that you check for this vulnerability yourself by trying to visit a site which you know has an invalid (e.g. expired, or incorrect domain) certificate and seeing if the connection succeeds.

– Polynomial
2 hours ago






As an aside, I once assessed a TLS inspection gateway product which re-signed all HTTPS connections using the internal CA, even if the remote certificate was invalid. This allowed for a particularly effective phishing campaign in which we impersonated the company intranet and had our phishing domain automagically signed by the company CA. I suggest that you check for this vulnerability yourself by trying to visit a site which you know has an invalid (e.g. expired, or incorrect domain) certificate and seeing if the connection succeeds.

– Polynomial
2 hours ago














Amazing! I feel like pen-testing is a missed calling.

– Scuba Steve
2 hours ago





Amazing! I feel like pen-testing is a missed calling.

– Scuba Steve
2 hours ago




1




1





FWIW even if 1.3 would allow static-RSA, it changes the key derivation to include the whole handshake (not just premaster+nonces) and MITM couldn't make those equal. This is similar to rfc7627 which fixes 'triple handshake' for 1.2, except that is optional and so MITM can force it off.

– dave_thompson_085
1 hour ago






FWIW even if 1.3 would allow static-RSA, it changes the key derivation to include the whole handshake (not just premaster+nonces) and MITM couldn't make those equal. This is similar to rfc7627 which fixes 'triple handshake' for 1.2, except that is optional and so MITM can force it off.

– dave_thompson_085
1 hour ago


















draft saved

draft discarded
















































Thanks for contributing an answer to Information Security Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fsecurity.stackexchange.com%2fquestions%2f206103%2fa-workplace-installs-custom-certificates-on-personal-devices-can-this-be-used-t%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Reverse int within the 32-bit signed integer range: [−2^31, 2^31 − 1]Combining two 32-bit integers into one 64-bit integerDetermine if an int is within rangeLossy packing 32 bit integer to 16 bitComputing the square root of a 64-bit integerKeeping integer addition within boundsSafe multiplication of two 64-bit signed integersLeetcode 10: Regular Expression MatchingSigned integer-to-ascii x86_64 assembler macroReverse the digits of an Integer“Add two numbers given in reverse order from a linked list”

Category:Fedor von Bock Media in category "Fedor von Bock"Navigation menuUpload mediaISNI: 0000 0000 5511 3417VIAF ID: 24712551GND ID: 119294796Library of Congress authority ID: n96068363BnF ID: 12534305fSUDOC authorities ID: 034604189Open Library ID: OL338253ANKCR AUT ID: jn19990000869National Library of Israel ID: 000514068National Thesaurus for Author Names ID: 341574317ReasonatorScholiaStatistics

Kiel Indholdsfortegnelse Historie | Transport og færgeforbindelser | Sejlsport og anden sport | Kultur | Kendte personer fra Kiel | Noter | Litteratur | Eksterne henvisninger | Navigationsmenuwww.kiel.de54°19′31″N 10°8′26″Ø / 54.32528°N 10.14056°Ø / 54.32528; 10.14056Oberbürgermeister Dr. Ulf Kämpferwww.statistik-nord.deDen danske Stats StatistikKiels hjemmesiderrrWorldCat312794080n790547494030481-4