How can I plot a Farey diagram? The 2019 Stack Overflow Developer Survey Results Are InHow to make this beautiful animationPlotting an epicycloidGenerating a topological space diagram for an n-element setMathematica code for Bifurcation DiagramHow to draw a contour diagram in Mathematica?How to draw timing diagram from a list of values?Expressing a series formulaBifurcation diagram for Piecewise functionHow to draw a clock-diagram?How can I plot a space time diagram in mathematica?Plotting classical polymer modelA problem in bifurcation diagram

Confusion about non-derivable continuous functions

Monty Hall variation

How can I fix this gap between bookcases I made?

How to reverse every other sublist of a list?

Unbreakable Formation vs. Cry of the Carnarium

What does "sndry explns" mean in one of the Hitchhiker's guide books?

Should I write numbers in words or as numerals when there are multiple next to each other?

Are there any other methods to apply to solving simultaneous equations?

Where does the "burst of radiance" from Holy Weapon originate?

Can't find the latex code for the ⍎ (down tack jot) symbol

How come people say “Would of”?

What is a mixture ratio of propellant?

A poker game description that does not feel gimmicky

"What time...?" or "At what time...?" - what is more grammatically correct?

Falsification in Math vs Science

What do hard-Brexiteers want with respect to the Irish border?

Idiomatic way to prevent slicing?

It's possible to achieve negative score?

JSON.serialize: is it possible to suppress null values of a map?

What do the Banks children have against barley water?

Springs with some finite mass

Understanding the implication of what "well-defined" means for the operation in quotient group

Are USB sockets on wall outlets live all the time, even when the switch is off?

Which Sci-Fi work first showed weapon of galactic-scale mass destruction?



How can I plot a Farey diagram?



The 2019 Stack Overflow Developer Survey Results Are InHow to make this beautiful animationPlotting an epicycloidGenerating a topological space diagram for an n-element setMathematica code for Bifurcation DiagramHow to draw a contour diagram in Mathematica?How to draw timing diagram from a list of values?Expressing a series formulaBifurcation diagram for Piecewise functionHow to draw a clock-diagram?How can I plot a space time diagram in mathematica?Plotting classical polymer modelA problem in bifurcation diagram










4












$begingroup$


How can I plot the following diagram for a Farey series?



enter image description here










share|improve this question









New contributor




Gustavo Rubiano is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    From the beautiful book A. Hatcher Topology of numbers
    $endgroup$
    – Gustavo Rubiano
    yesterday






  • 1




    $begingroup$
    Could you perhaps expand a bit on how the curves are calculated etc?
    $endgroup$
    – MarcoB
    yesterday






  • 1




    $begingroup$
    pi.math.cornell.edu/~hatcher/TN/TNch1.pdf
    $endgroup$
    – Moo
    yesterday










  • $begingroup$
    Technically this is not a Farey series/sequence $F_n$ of order $n$, which is defined to be all fractions (sometimes restricted to the interval between 0 and 1) with denominator at most $n$. For example 3/8 is present but not 1/8. It's a recursive mediant subdivision. It's related in that in any three successive terms of a Farey sequence, the middle one is the mediant of the other two.
    $endgroup$
    – Michael E2
    8 hours ago
















4












$begingroup$


How can I plot the following diagram for a Farey series?



enter image description here










share|improve this question









New contributor




Gustavo Rubiano is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    From the beautiful book A. Hatcher Topology of numbers
    $endgroup$
    – Gustavo Rubiano
    yesterday






  • 1




    $begingroup$
    Could you perhaps expand a bit on how the curves are calculated etc?
    $endgroup$
    – MarcoB
    yesterday






  • 1




    $begingroup$
    pi.math.cornell.edu/~hatcher/TN/TNch1.pdf
    $endgroup$
    – Moo
    yesterday










  • $begingroup$
    Technically this is not a Farey series/sequence $F_n$ of order $n$, which is defined to be all fractions (sometimes restricted to the interval between 0 and 1) with denominator at most $n$. For example 3/8 is present but not 1/8. It's a recursive mediant subdivision. It's related in that in any three successive terms of a Farey sequence, the middle one is the mediant of the other two.
    $endgroup$
    – Michael E2
    8 hours ago














4












4








4


2



$begingroup$


How can I plot the following diagram for a Farey series?



enter image description here










share|improve this question









New contributor




Gustavo Rubiano is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




How can I plot the following diagram for a Farey series?



enter image description here







graphics number-theory






share|improve this question









New contributor




Gustavo Rubiano is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|improve this question









New contributor




Gustavo Rubiano is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|improve this question




share|improve this question








edited 23 hours ago









Michael E2

150k12203482




150k12203482






New contributor




Gustavo Rubiano is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked yesterday









Gustavo RubianoGustavo Rubiano

243




243




New contributor




Gustavo Rubiano is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Gustavo Rubiano is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Gustavo Rubiano is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











  • $begingroup$
    From the beautiful book A. Hatcher Topology of numbers
    $endgroup$
    – Gustavo Rubiano
    yesterday






  • 1




    $begingroup$
    Could you perhaps expand a bit on how the curves are calculated etc?
    $endgroup$
    – MarcoB
    yesterday






  • 1




    $begingroup$
    pi.math.cornell.edu/~hatcher/TN/TNch1.pdf
    $endgroup$
    – Moo
    yesterday










  • $begingroup$
    Technically this is not a Farey series/sequence $F_n$ of order $n$, which is defined to be all fractions (sometimes restricted to the interval between 0 and 1) with denominator at most $n$. For example 3/8 is present but not 1/8. It's a recursive mediant subdivision. It's related in that in any three successive terms of a Farey sequence, the middle one is the mediant of the other two.
    $endgroup$
    – Michael E2
    8 hours ago

















  • $begingroup$
    From the beautiful book A. Hatcher Topology of numbers
    $endgroup$
    – Gustavo Rubiano
    yesterday






  • 1




    $begingroup$
    Could you perhaps expand a bit on how the curves are calculated etc?
    $endgroup$
    – MarcoB
    yesterday






  • 1




    $begingroup$
    pi.math.cornell.edu/~hatcher/TN/TNch1.pdf
    $endgroup$
    – Moo
    yesterday










  • $begingroup$
    Technically this is not a Farey series/sequence $F_n$ of order $n$, which is defined to be all fractions (sometimes restricted to the interval between 0 and 1) with denominator at most $n$. For example 3/8 is present but not 1/8. It's a recursive mediant subdivision. It's related in that in any three successive terms of a Farey sequence, the middle one is the mediant of the other two.
    $endgroup$
    – Michael E2
    8 hours ago
















$begingroup$
From the beautiful book A. Hatcher Topology of numbers
$endgroup$
– Gustavo Rubiano
yesterday




$begingroup$
From the beautiful book A. Hatcher Topology of numbers
$endgroup$
– Gustavo Rubiano
yesterday




1




1




$begingroup$
Could you perhaps expand a bit on how the curves are calculated etc?
$endgroup$
– MarcoB
yesterday




$begingroup$
Could you perhaps expand a bit on how the curves are calculated etc?
$endgroup$
– MarcoB
yesterday




1




1




$begingroup$
pi.math.cornell.edu/~hatcher/TN/TNch1.pdf
$endgroup$
– Moo
yesterday




$begingroup$
pi.math.cornell.edu/~hatcher/TN/TNch1.pdf
$endgroup$
– Moo
yesterday












$begingroup$
Technically this is not a Farey series/sequence $F_n$ of order $n$, which is defined to be all fractions (sometimes restricted to the interval between 0 and 1) with denominator at most $n$. For example 3/8 is present but not 1/8. It's a recursive mediant subdivision. It's related in that in any three successive terms of a Farey sequence, the middle one is the mediant of the other two.
$endgroup$
– Michael E2
8 hours ago





$begingroup$
Technically this is not a Farey series/sequence $F_n$ of order $n$, which is defined to be all fractions (sometimes restricted to the interval between 0 and 1) with denominator at most $n$. For example 3/8 is present but not 1/8. It's a recursive mediant subdivision. It's related in that in any three successive terms of a Farey sequence, the middle one is the mediant of the other two.
$endgroup$
– Michael E2
8 hours ago











3 Answers
3






active

oldest

votes


















11












$begingroup$

The curvilinear triangles which are characteristic for this type of plot are called hypocycloid curves. We can use the parametric equations on Wikipedia to plot these, like so:



x[a_, b_, t_] := (b - a) Cos[t] + a Cos[(b - a)/a t]
y[a_, b_, t_] := (b - a) Sin[t] - a Sin[(b - a)/a t]
hypocycloid[n_] := ParametricPlot[
x[1/n, 1, t], y[1/n, 1, t],
t, 0, 2 Pi,
PlotStyle -> Thickness[0.002], Black
]

Show[
Graphics[Circle[0, 0, 1]],
hypocycloid[2],
hypocycloid[4],
hypocycloid[8],
hypocycloid[16],
hypocycloid[32],
hypocycloid[64],
ImageSize -> 500
]


Mathematica graphics



I've previously written about an application of hypocycloids here, and I showed how to visualize epicycloids here.



How to generate the labels is described here (also linked to by moo in a comment). I will simply provide the code.



mediant[a_, b_, c_, d_] := a + c, b + d
recursive[v1_, v2_, depth_] := If[
depth > 2,
mediant[v1, v2],
recursive[v1, mediant[v1, v2], depth + 1],
mediant[v1, v2],
recursive[mediant[v1, v2], v2, depth + 1]
]

computeLabels[v1_, v2_] := Module[numbers,
numbers =
Cases[recursive[v1, v2, 0], _Integer, _Integer, Infinity];
StringTemplate["``/``"] @@@ numbers
]
computeLabelsNegative[v1_, v2_] := Module[numbers,
numbers =
Cases[recursive[v1, v2, 0], _Integer, _Integer, Infinity];
StringTemplate["-`2`/`1`"] @@@ numbers
]

labels = Reverse@Join[
"1/0",
computeLabels[1, 0, 1, 1],
"1/1",
computeLabels[1, 1, 0, 1],
"0/1",
computeLabelsNegative[1, 0, 1, 1],
"-1,1",
computeLabelsNegative[1, 1, 0, 1]
];

coords = CirclePoints[1.1, 186 Degree, 64];

Show[
Graphics[Circle[0, 0, 1]],
hypocycloid[2],
hypocycloid[4],
hypocycloid[8],
hypocycloid[16],
hypocycloid[32],
hypocycloid[64],
Graphics@MapThread[Text, labels, coords],
ImageSize -> 500
]


Mathematica graphics






share|improve this answer











$endgroup$




















    3












    $begingroup$

    I looked up the Farey sequence on Wikipedia, out of curiosity, because I had not heard of it before. The Farey sequence of order $n$ is "the sequence of completely reduced fractions between 0 and 1 which, when in lowest terms, have denominators less than or equal to $n$, arranged in order of increasing size".



    On that basis, you can generate the sequence as follows, for instance:



    ClearAll[farey]
    farey[n_Integer] := (Divide @@@ Subsets[Range[n], 2]) ~ Join ~ 0, 1 //DeleteDuplicates //Sort


    So for instance:



    farey[5]



    0, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1




    I am not sure how these sequences are connected with the figure you showed though.






    share|improve this answer









    $endgroup$












    • $begingroup$
      Thanks to C.E., it is a concrete answer
      $endgroup$
      – Gustavo Rubiano
      13 hours ago


















    2












    $begingroup$

    Using Graph with a bit of coding:



    addPoint[p : h_[a_,b_], q : h_[c_,d_], i_] :=
    With[np = h[a + c, b + d], Sow[p [UndirectedEdge] np, np [UndirectedEdge] q]; Sow[i, i, "Depth"]; p, np, q]

    addPoint[p : h_[a_,b_], q : h_[-1][c_,d_], i_] :=
    With[np = h[-1][a + c, b + d], Sow[p [UndirectedEdge] np, np [UndirectedEdge] q]; Sow[i, i, "Depth"]; p, np, q]

    addPoint[p : h_[-1][a_,b_], q : h_[c_,d_], i_] :=
    With[np = h[-1][a + c, b + d], Sow[p [UndirectedEdge] np, np [UndirectedEdge] q]; Sow[i, i, "Depth"]; p, np, q]

    addPoint[p : h_[-1][a_,b_], q : h_[-1][c_,d_], i_] :=
    With[np = h[-1][a + c, b + d], Sow[p [UndirectedEdge] np, np [UndirectedEdge] q]; Sow[i, i, "Depth"]; p, np, q]

    fLabel[fr_, angle_] :=
    With[tangle=ArcTan@@angle, Placed[fLabel[fr], AngleVector[1/2, 1/2, .7, #] & /@tangle, tangle+Pi]]

    fLabel[h_[a_, b_]] := ToString[a] ~~ "/" ~~ ToString[b]
    fLabel[h_[-1][a_, b_]] := "-" ~~ ToString[a] ~~ "/" ~~ ToString[b]

    FareyDiagram[n_Integer, d_Integer: 1, opts___?OptionQ] :=
    Block[fr, top, bottom, stedges, toppart, bottompart, vert, edges, coords, labels, labpos, cfunc, i, edgestyle, dstyle, nopts,
    cfunc = ColorFunction /. Flatten[opts] /. ColorFunction -> Automatic;
    nopts = FilterRules[Flatten[opts], Options[Graph]];
    top = fr[0,1], fr[1,1], fr[1,0];
    bottom = fr[1,0], fr[-1][1,1], fr[0,1];
    stedges = UndirectedEdge@@@Join[Partition[top, 2, 1], Partition[bottom, 2, 1], fr[0, 1],fr[1, 0]];
    i = 0;toppart = Reap[Nest[(i++; Split[Flatten[addPoint[#, i] & /@ Partition[#, 2, 1],1]][[All,1]])&, top, n]];
    i = 0;bottompart = Reap[Nest[(i++; Split[Flatten[addPoint[#, i] & /@ Partition[#,2,1],1]][[All,1]])&,bottom, n]];
    vert = Join[toppart[[1]], bottompart[[1, 2;;-2]]];
    edges = Flatten[stedges, toppart[[2, 1]], bottompart[[2, 1]]];
    coords = CirclePoints[1,0,Length[vert]];
    labpos = Range[1, Length[vert], 2 ^ (d - 1)];
    labels = Thread[vert[[labpos]]->fLabel@@@Transpose[vert,coords][[labpos]]];
    edgestyle = Black;
    dstyle = Black;
    If[cfunc =!= Automatic,
    edgestyle = Flatten[Table[0, Length[stedges]], toppart[[2, 2]], bottompart[[2, 2]]];
    edgestyle = edgestyle / Max[edgestyle];
    edgestyle = Thread[edges -> Flatten[cfunc[1 - #] & /@ edgestyle]];
    dstyle = cfunc[1]
    ];
    Graph[vert, edges, nopts, VertexCoordinates->CirclePoints[1,0,Length[vert]], VertexLabels->labels,
    EdgeShapeFunction->(BSplineCurve[#1[[1]],0,0,#1[[2]], SplineWeights->2,EuclideanDistance@@#,2]&),
    PerformanceGoal->"Speed", Epilog->dstyle, Circle[], VertexShapeFunction -> "Point", EdgeStyle -> edgestyle, VertexStyle -> dstyle]
    ]


    Example:



    FareyDiagram[4]


    enter image description here



    FareyDiagram[6, 4, ColorFunction -> Hue, 
    VertexLabelStyle -> Darker[Red]]


    enter image description here






    share|improve this answer











    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "387"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: false,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: null,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );






      Gustavo Rubiano is a new contributor. Be nice, and check out our Code of Conduct.









      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f194838%2fhow-can-i-plot-a-farey-diagram%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      11












      $begingroup$

      The curvilinear triangles which are characteristic for this type of plot are called hypocycloid curves. We can use the parametric equations on Wikipedia to plot these, like so:



      x[a_, b_, t_] := (b - a) Cos[t] + a Cos[(b - a)/a t]
      y[a_, b_, t_] := (b - a) Sin[t] - a Sin[(b - a)/a t]
      hypocycloid[n_] := ParametricPlot[
      x[1/n, 1, t], y[1/n, 1, t],
      t, 0, 2 Pi,
      PlotStyle -> Thickness[0.002], Black
      ]

      Show[
      Graphics[Circle[0, 0, 1]],
      hypocycloid[2],
      hypocycloid[4],
      hypocycloid[8],
      hypocycloid[16],
      hypocycloid[32],
      hypocycloid[64],
      ImageSize -> 500
      ]


      Mathematica graphics



      I've previously written about an application of hypocycloids here, and I showed how to visualize epicycloids here.



      How to generate the labels is described here (also linked to by moo in a comment). I will simply provide the code.



      mediant[a_, b_, c_, d_] := a + c, b + d
      recursive[v1_, v2_, depth_] := If[
      depth > 2,
      mediant[v1, v2],
      recursive[v1, mediant[v1, v2], depth + 1],
      mediant[v1, v2],
      recursive[mediant[v1, v2], v2, depth + 1]
      ]

      computeLabels[v1_, v2_] := Module[numbers,
      numbers =
      Cases[recursive[v1, v2, 0], _Integer, _Integer, Infinity];
      StringTemplate["``/``"] @@@ numbers
      ]
      computeLabelsNegative[v1_, v2_] := Module[numbers,
      numbers =
      Cases[recursive[v1, v2, 0], _Integer, _Integer, Infinity];
      StringTemplate["-`2`/`1`"] @@@ numbers
      ]

      labels = Reverse@Join[
      "1/0",
      computeLabels[1, 0, 1, 1],
      "1/1",
      computeLabels[1, 1, 0, 1],
      "0/1",
      computeLabelsNegative[1, 0, 1, 1],
      "-1,1",
      computeLabelsNegative[1, 1, 0, 1]
      ];

      coords = CirclePoints[1.1, 186 Degree, 64];

      Show[
      Graphics[Circle[0, 0, 1]],
      hypocycloid[2],
      hypocycloid[4],
      hypocycloid[8],
      hypocycloid[16],
      hypocycloid[32],
      hypocycloid[64],
      Graphics@MapThread[Text, labels, coords],
      ImageSize -> 500
      ]


      Mathematica graphics






      share|improve this answer











      $endgroup$

















        11












        $begingroup$

        The curvilinear triangles which are characteristic for this type of plot are called hypocycloid curves. We can use the parametric equations on Wikipedia to plot these, like so:



        x[a_, b_, t_] := (b - a) Cos[t] + a Cos[(b - a)/a t]
        y[a_, b_, t_] := (b - a) Sin[t] - a Sin[(b - a)/a t]
        hypocycloid[n_] := ParametricPlot[
        x[1/n, 1, t], y[1/n, 1, t],
        t, 0, 2 Pi,
        PlotStyle -> Thickness[0.002], Black
        ]

        Show[
        Graphics[Circle[0, 0, 1]],
        hypocycloid[2],
        hypocycloid[4],
        hypocycloid[8],
        hypocycloid[16],
        hypocycloid[32],
        hypocycloid[64],
        ImageSize -> 500
        ]


        Mathematica graphics



        I've previously written about an application of hypocycloids here, and I showed how to visualize epicycloids here.



        How to generate the labels is described here (also linked to by moo in a comment). I will simply provide the code.



        mediant[a_, b_, c_, d_] := a + c, b + d
        recursive[v1_, v2_, depth_] := If[
        depth > 2,
        mediant[v1, v2],
        recursive[v1, mediant[v1, v2], depth + 1],
        mediant[v1, v2],
        recursive[mediant[v1, v2], v2, depth + 1]
        ]

        computeLabels[v1_, v2_] := Module[numbers,
        numbers =
        Cases[recursive[v1, v2, 0], _Integer, _Integer, Infinity];
        StringTemplate["``/``"] @@@ numbers
        ]
        computeLabelsNegative[v1_, v2_] := Module[numbers,
        numbers =
        Cases[recursive[v1, v2, 0], _Integer, _Integer, Infinity];
        StringTemplate["-`2`/`1`"] @@@ numbers
        ]

        labels = Reverse@Join[
        "1/0",
        computeLabels[1, 0, 1, 1],
        "1/1",
        computeLabels[1, 1, 0, 1],
        "0/1",
        computeLabelsNegative[1, 0, 1, 1],
        "-1,1",
        computeLabelsNegative[1, 1, 0, 1]
        ];

        coords = CirclePoints[1.1, 186 Degree, 64];

        Show[
        Graphics[Circle[0, 0, 1]],
        hypocycloid[2],
        hypocycloid[4],
        hypocycloid[8],
        hypocycloid[16],
        hypocycloid[32],
        hypocycloid[64],
        Graphics@MapThread[Text, labels, coords],
        ImageSize -> 500
        ]


        Mathematica graphics






        share|improve this answer











        $endgroup$















          11












          11








          11





          $begingroup$

          The curvilinear triangles which are characteristic for this type of plot are called hypocycloid curves. We can use the parametric equations on Wikipedia to plot these, like so:



          x[a_, b_, t_] := (b - a) Cos[t] + a Cos[(b - a)/a t]
          y[a_, b_, t_] := (b - a) Sin[t] - a Sin[(b - a)/a t]
          hypocycloid[n_] := ParametricPlot[
          x[1/n, 1, t], y[1/n, 1, t],
          t, 0, 2 Pi,
          PlotStyle -> Thickness[0.002], Black
          ]

          Show[
          Graphics[Circle[0, 0, 1]],
          hypocycloid[2],
          hypocycloid[4],
          hypocycloid[8],
          hypocycloid[16],
          hypocycloid[32],
          hypocycloid[64],
          ImageSize -> 500
          ]


          Mathematica graphics



          I've previously written about an application of hypocycloids here, and I showed how to visualize epicycloids here.



          How to generate the labels is described here (also linked to by moo in a comment). I will simply provide the code.



          mediant[a_, b_, c_, d_] := a + c, b + d
          recursive[v1_, v2_, depth_] := If[
          depth > 2,
          mediant[v1, v2],
          recursive[v1, mediant[v1, v2], depth + 1],
          mediant[v1, v2],
          recursive[mediant[v1, v2], v2, depth + 1]
          ]

          computeLabels[v1_, v2_] := Module[numbers,
          numbers =
          Cases[recursive[v1, v2, 0], _Integer, _Integer, Infinity];
          StringTemplate["``/``"] @@@ numbers
          ]
          computeLabelsNegative[v1_, v2_] := Module[numbers,
          numbers =
          Cases[recursive[v1, v2, 0], _Integer, _Integer, Infinity];
          StringTemplate["-`2`/`1`"] @@@ numbers
          ]

          labels = Reverse@Join[
          "1/0",
          computeLabels[1, 0, 1, 1],
          "1/1",
          computeLabels[1, 1, 0, 1],
          "0/1",
          computeLabelsNegative[1, 0, 1, 1],
          "-1,1",
          computeLabelsNegative[1, 1, 0, 1]
          ];

          coords = CirclePoints[1.1, 186 Degree, 64];

          Show[
          Graphics[Circle[0, 0, 1]],
          hypocycloid[2],
          hypocycloid[4],
          hypocycloid[8],
          hypocycloid[16],
          hypocycloid[32],
          hypocycloid[64],
          Graphics@MapThread[Text, labels, coords],
          ImageSize -> 500
          ]


          Mathematica graphics






          share|improve this answer











          $endgroup$



          The curvilinear triangles which are characteristic for this type of plot are called hypocycloid curves. We can use the parametric equations on Wikipedia to plot these, like so:



          x[a_, b_, t_] := (b - a) Cos[t] + a Cos[(b - a)/a t]
          y[a_, b_, t_] := (b - a) Sin[t] - a Sin[(b - a)/a t]
          hypocycloid[n_] := ParametricPlot[
          x[1/n, 1, t], y[1/n, 1, t],
          t, 0, 2 Pi,
          PlotStyle -> Thickness[0.002], Black
          ]

          Show[
          Graphics[Circle[0, 0, 1]],
          hypocycloid[2],
          hypocycloid[4],
          hypocycloid[8],
          hypocycloid[16],
          hypocycloid[32],
          hypocycloid[64],
          ImageSize -> 500
          ]


          Mathematica graphics



          I've previously written about an application of hypocycloids here, and I showed how to visualize epicycloids here.



          How to generate the labels is described here (also linked to by moo in a comment). I will simply provide the code.



          mediant[a_, b_, c_, d_] := a + c, b + d
          recursive[v1_, v2_, depth_] := If[
          depth > 2,
          mediant[v1, v2],
          recursive[v1, mediant[v1, v2], depth + 1],
          mediant[v1, v2],
          recursive[mediant[v1, v2], v2, depth + 1]
          ]

          computeLabels[v1_, v2_] := Module[numbers,
          numbers =
          Cases[recursive[v1, v2, 0], _Integer, _Integer, Infinity];
          StringTemplate["``/``"] @@@ numbers
          ]
          computeLabelsNegative[v1_, v2_] := Module[numbers,
          numbers =
          Cases[recursive[v1, v2, 0], _Integer, _Integer, Infinity];
          StringTemplate["-`2`/`1`"] @@@ numbers
          ]

          labels = Reverse@Join[
          "1/0",
          computeLabels[1, 0, 1, 1],
          "1/1",
          computeLabels[1, 1, 0, 1],
          "0/1",
          computeLabelsNegative[1, 0, 1, 1],
          "-1,1",
          computeLabelsNegative[1, 1, 0, 1]
          ];

          coords = CirclePoints[1.1, 186 Degree, 64];

          Show[
          Graphics[Circle[0, 0, 1]],
          hypocycloid[2],
          hypocycloid[4],
          hypocycloid[8],
          hypocycloid[16],
          hypocycloid[32],
          hypocycloid[64],
          Graphics@MapThread[Text, labels, coords],
          ImageSize -> 500
          ]


          Mathematica graphics







          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited 19 hours ago

























          answered 22 hours ago









          C. E.C. E.

          51.1k3101207




          51.1k3101207





















              3












              $begingroup$

              I looked up the Farey sequence on Wikipedia, out of curiosity, because I had not heard of it before. The Farey sequence of order $n$ is "the sequence of completely reduced fractions between 0 and 1 which, when in lowest terms, have denominators less than or equal to $n$, arranged in order of increasing size".



              On that basis, you can generate the sequence as follows, for instance:



              ClearAll[farey]
              farey[n_Integer] := (Divide @@@ Subsets[Range[n], 2]) ~ Join ~ 0, 1 //DeleteDuplicates //Sort


              So for instance:



              farey[5]



              0, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1




              I am not sure how these sequences are connected with the figure you showed though.






              share|improve this answer









              $endgroup$












              • $begingroup$
                Thanks to C.E., it is a concrete answer
                $endgroup$
                – Gustavo Rubiano
                13 hours ago















              3












              $begingroup$

              I looked up the Farey sequence on Wikipedia, out of curiosity, because I had not heard of it before. The Farey sequence of order $n$ is "the sequence of completely reduced fractions between 0 and 1 which, when in lowest terms, have denominators less than or equal to $n$, arranged in order of increasing size".



              On that basis, you can generate the sequence as follows, for instance:



              ClearAll[farey]
              farey[n_Integer] := (Divide @@@ Subsets[Range[n], 2]) ~ Join ~ 0, 1 //DeleteDuplicates //Sort


              So for instance:



              farey[5]



              0, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1




              I am not sure how these sequences are connected with the figure you showed though.






              share|improve this answer









              $endgroup$












              • $begingroup$
                Thanks to C.E., it is a concrete answer
                $endgroup$
                – Gustavo Rubiano
                13 hours ago













              3












              3








              3





              $begingroup$

              I looked up the Farey sequence on Wikipedia, out of curiosity, because I had not heard of it before. The Farey sequence of order $n$ is "the sequence of completely reduced fractions between 0 and 1 which, when in lowest terms, have denominators less than or equal to $n$, arranged in order of increasing size".



              On that basis, you can generate the sequence as follows, for instance:



              ClearAll[farey]
              farey[n_Integer] := (Divide @@@ Subsets[Range[n], 2]) ~ Join ~ 0, 1 //DeleteDuplicates //Sort


              So for instance:



              farey[5]



              0, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1




              I am not sure how these sequences are connected with the figure you showed though.






              share|improve this answer









              $endgroup$



              I looked up the Farey sequence on Wikipedia, out of curiosity, because I had not heard of it before. The Farey sequence of order $n$ is "the sequence of completely reduced fractions between 0 and 1 which, when in lowest terms, have denominators less than or equal to $n$, arranged in order of increasing size".



              On that basis, you can generate the sequence as follows, for instance:



              ClearAll[farey]
              farey[n_Integer] := (Divide @@@ Subsets[Range[n], 2]) ~ Join ~ 0, 1 //DeleteDuplicates //Sort


              So for instance:



              farey[5]



              0, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1




              I am not sure how these sequences are connected with the figure you showed though.







              share|improve this answer












              share|improve this answer



              share|improve this answer










              answered yesterday









              MarcoBMarcoB

              38.6k557115




              38.6k557115











              • $begingroup$
                Thanks to C.E., it is a concrete answer
                $endgroup$
                – Gustavo Rubiano
                13 hours ago
















              • $begingroup$
                Thanks to C.E., it is a concrete answer
                $endgroup$
                – Gustavo Rubiano
                13 hours ago















              $begingroup$
              Thanks to C.E., it is a concrete answer
              $endgroup$
              – Gustavo Rubiano
              13 hours ago




              $begingroup$
              Thanks to C.E., it is a concrete answer
              $endgroup$
              – Gustavo Rubiano
              13 hours ago











              2












              $begingroup$

              Using Graph with a bit of coding:



              addPoint[p : h_[a_,b_], q : h_[c_,d_], i_] :=
              With[np = h[a + c, b + d], Sow[p [UndirectedEdge] np, np [UndirectedEdge] q]; Sow[i, i, "Depth"]; p, np, q]

              addPoint[p : h_[a_,b_], q : h_[-1][c_,d_], i_] :=
              With[np = h[-1][a + c, b + d], Sow[p [UndirectedEdge] np, np [UndirectedEdge] q]; Sow[i, i, "Depth"]; p, np, q]

              addPoint[p : h_[-1][a_,b_], q : h_[c_,d_], i_] :=
              With[np = h[-1][a + c, b + d], Sow[p [UndirectedEdge] np, np [UndirectedEdge] q]; Sow[i, i, "Depth"]; p, np, q]

              addPoint[p : h_[-1][a_,b_], q : h_[-1][c_,d_], i_] :=
              With[np = h[-1][a + c, b + d], Sow[p [UndirectedEdge] np, np [UndirectedEdge] q]; Sow[i, i, "Depth"]; p, np, q]

              fLabel[fr_, angle_] :=
              With[tangle=ArcTan@@angle, Placed[fLabel[fr], AngleVector[1/2, 1/2, .7, #] & /@tangle, tangle+Pi]]

              fLabel[h_[a_, b_]] := ToString[a] ~~ "/" ~~ ToString[b]
              fLabel[h_[-1][a_, b_]] := "-" ~~ ToString[a] ~~ "/" ~~ ToString[b]

              FareyDiagram[n_Integer, d_Integer: 1, opts___?OptionQ] :=
              Block[fr, top, bottom, stedges, toppart, bottompart, vert, edges, coords, labels, labpos, cfunc, i, edgestyle, dstyle, nopts,
              cfunc = ColorFunction /. Flatten[opts] /. ColorFunction -> Automatic;
              nopts = FilterRules[Flatten[opts], Options[Graph]];
              top = fr[0,1], fr[1,1], fr[1,0];
              bottom = fr[1,0], fr[-1][1,1], fr[0,1];
              stedges = UndirectedEdge@@@Join[Partition[top, 2, 1], Partition[bottom, 2, 1], fr[0, 1],fr[1, 0]];
              i = 0;toppart = Reap[Nest[(i++; Split[Flatten[addPoint[#, i] & /@ Partition[#, 2, 1],1]][[All,1]])&, top, n]];
              i = 0;bottompart = Reap[Nest[(i++; Split[Flatten[addPoint[#, i] & /@ Partition[#,2,1],1]][[All,1]])&,bottom, n]];
              vert = Join[toppart[[1]], bottompart[[1, 2;;-2]]];
              edges = Flatten[stedges, toppart[[2, 1]], bottompart[[2, 1]]];
              coords = CirclePoints[1,0,Length[vert]];
              labpos = Range[1, Length[vert], 2 ^ (d - 1)];
              labels = Thread[vert[[labpos]]->fLabel@@@Transpose[vert,coords][[labpos]]];
              edgestyle = Black;
              dstyle = Black;
              If[cfunc =!= Automatic,
              edgestyle = Flatten[Table[0, Length[stedges]], toppart[[2, 2]], bottompart[[2, 2]]];
              edgestyle = edgestyle / Max[edgestyle];
              edgestyle = Thread[edges -> Flatten[cfunc[1 - #] & /@ edgestyle]];
              dstyle = cfunc[1]
              ];
              Graph[vert, edges, nopts, VertexCoordinates->CirclePoints[1,0,Length[vert]], VertexLabels->labels,
              EdgeShapeFunction->(BSplineCurve[#1[[1]],0,0,#1[[2]], SplineWeights->2,EuclideanDistance@@#,2]&),
              PerformanceGoal->"Speed", Epilog->dstyle, Circle[], VertexShapeFunction -> "Point", EdgeStyle -> edgestyle, VertexStyle -> dstyle]
              ]


              Example:



              FareyDiagram[4]


              enter image description here



              FareyDiagram[6, 4, ColorFunction -> Hue, 
              VertexLabelStyle -> Darker[Red]]


              enter image description here






              share|improve this answer











              $endgroup$

















                2












                $begingroup$

                Using Graph with a bit of coding:



                addPoint[p : h_[a_,b_], q : h_[c_,d_], i_] :=
                With[np = h[a + c, b + d], Sow[p [UndirectedEdge] np, np [UndirectedEdge] q]; Sow[i, i, "Depth"]; p, np, q]

                addPoint[p : h_[a_,b_], q : h_[-1][c_,d_], i_] :=
                With[np = h[-1][a + c, b + d], Sow[p [UndirectedEdge] np, np [UndirectedEdge] q]; Sow[i, i, "Depth"]; p, np, q]

                addPoint[p : h_[-1][a_,b_], q : h_[c_,d_], i_] :=
                With[np = h[-1][a + c, b + d], Sow[p [UndirectedEdge] np, np [UndirectedEdge] q]; Sow[i, i, "Depth"]; p, np, q]

                addPoint[p : h_[-1][a_,b_], q : h_[-1][c_,d_], i_] :=
                With[np = h[-1][a + c, b + d], Sow[p [UndirectedEdge] np, np [UndirectedEdge] q]; Sow[i, i, "Depth"]; p, np, q]

                fLabel[fr_, angle_] :=
                With[tangle=ArcTan@@angle, Placed[fLabel[fr], AngleVector[1/2, 1/2, .7, #] & /@tangle, tangle+Pi]]

                fLabel[h_[a_, b_]] := ToString[a] ~~ "/" ~~ ToString[b]
                fLabel[h_[-1][a_, b_]] := "-" ~~ ToString[a] ~~ "/" ~~ ToString[b]

                FareyDiagram[n_Integer, d_Integer: 1, opts___?OptionQ] :=
                Block[fr, top, bottom, stedges, toppart, bottompart, vert, edges, coords, labels, labpos, cfunc, i, edgestyle, dstyle, nopts,
                cfunc = ColorFunction /. Flatten[opts] /. ColorFunction -> Automatic;
                nopts = FilterRules[Flatten[opts], Options[Graph]];
                top = fr[0,1], fr[1,1], fr[1,0];
                bottom = fr[1,0], fr[-1][1,1], fr[0,1];
                stedges = UndirectedEdge@@@Join[Partition[top, 2, 1], Partition[bottom, 2, 1], fr[0, 1],fr[1, 0]];
                i = 0;toppart = Reap[Nest[(i++; Split[Flatten[addPoint[#, i] & /@ Partition[#, 2, 1],1]][[All,1]])&, top, n]];
                i = 0;bottompart = Reap[Nest[(i++; Split[Flatten[addPoint[#, i] & /@ Partition[#,2,1],1]][[All,1]])&,bottom, n]];
                vert = Join[toppart[[1]], bottompart[[1, 2;;-2]]];
                edges = Flatten[stedges, toppart[[2, 1]], bottompart[[2, 1]]];
                coords = CirclePoints[1,0,Length[vert]];
                labpos = Range[1, Length[vert], 2 ^ (d - 1)];
                labels = Thread[vert[[labpos]]->fLabel@@@Transpose[vert,coords][[labpos]]];
                edgestyle = Black;
                dstyle = Black;
                If[cfunc =!= Automatic,
                edgestyle = Flatten[Table[0, Length[stedges]], toppart[[2, 2]], bottompart[[2, 2]]];
                edgestyle = edgestyle / Max[edgestyle];
                edgestyle = Thread[edges -> Flatten[cfunc[1 - #] & /@ edgestyle]];
                dstyle = cfunc[1]
                ];
                Graph[vert, edges, nopts, VertexCoordinates->CirclePoints[1,0,Length[vert]], VertexLabels->labels,
                EdgeShapeFunction->(BSplineCurve[#1[[1]],0,0,#1[[2]], SplineWeights->2,EuclideanDistance@@#,2]&),
                PerformanceGoal->"Speed", Epilog->dstyle, Circle[], VertexShapeFunction -> "Point", EdgeStyle -> edgestyle, VertexStyle -> dstyle]
                ]


                Example:



                FareyDiagram[4]


                enter image description here



                FareyDiagram[6, 4, ColorFunction -> Hue, 
                VertexLabelStyle -> Darker[Red]]


                enter image description here






                share|improve this answer











                $endgroup$















                  2












                  2








                  2





                  $begingroup$

                  Using Graph with a bit of coding:



                  addPoint[p : h_[a_,b_], q : h_[c_,d_], i_] :=
                  With[np = h[a + c, b + d], Sow[p [UndirectedEdge] np, np [UndirectedEdge] q]; Sow[i, i, "Depth"]; p, np, q]

                  addPoint[p : h_[a_,b_], q : h_[-1][c_,d_], i_] :=
                  With[np = h[-1][a + c, b + d], Sow[p [UndirectedEdge] np, np [UndirectedEdge] q]; Sow[i, i, "Depth"]; p, np, q]

                  addPoint[p : h_[-1][a_,b_], q : h_[c_,d_], i_] :=
                  With[np = h[-1][a + c, b + d], Sow[p [UndirectedEdge] np, np [UndirectedEdge] q]; Sow[i, i, "Depth"]; p, np, q]

                  addPoint[p : h_[-1][a_,b_], q : h_[-1][c_,d_], i_] :=
                  With[np = h[-1][a + c, b + d], Sow[p [UndirectedEdge] np, np [UndirectedEdge] q]; Sow[i, i, "Depth"]; p, np, q]

                  fLabel[fr_, angle_] :=
                  With[tangle=ArcTan@@angle, Placed[fLabel[fr], AngleVector[1/2, 1/2, .7, #] & /@tangle, tangle+Pi]]

                  fLabel[h_[a_, b_]] := ToString[a] ~~ "/" ~~ ToString[b]
                  fLabel[h_[-1][a_, b_]] := "-" ~~ ToString[a] ~~ "/" ~~ ToString[b]

                  FareyDiagram[n_Integer, d_Integer: 1, opts___?OptionQ] :=
                  Block[fr, top, bottom, stedges, toppart, bottompart, vert, edges, coords, labels, labpos, cfunc, i, edgestyle, dstyle, nopts,
                  cfunc = ColorFunction /. Flatten[opts] /. ColorFunction -> Automatic;
                  nopts = FilterRules[Flatten[opts], Options[Graph]];
                  top = fr[0,1], fr[1,1], fr[1,0];
                  bottom = fr[1,0], fr[-1][1,1], fr[0,1];
                  stedges = UndirectedEdge@@@Join[Partition[top, 2, 1], Partition[bottom, 2, 1], fr[0, 1],fr[1, 0]];
                  i = 0;toppart = Reap[Nest[(i++; Split[Flatten[addPoint[#, i] & /@ Partition[#, 2, 1],1]][[All,1]])&, top, n]];
                  i = 0;bottompart = Reap[Nest[(i++; Split[Flatten[addPoint[#, i] & /@ Partition[#,2,1],1]][[All,1]])&,bottom, n]];
                  vert = Join[toppart[[1]], bottompart[[1, 2;;-2]]];
                  edges = Flatten[stedges, toppart[[2, 1]], bottompart[[2, 1]]];
                  coords = CirclePoints[1,0,Length[vert]];
                  labpos = Range[1, Length[vert], 2 ^ (d - 1)];
                  labels = Thread[vert[[labpos]]->fLabel@@@Transpose[vert,coords][[labpos]]];
                  edgestyle = Black;
                  dstyle = Black;
                  If[cfunc =!= Automatic,
                  edgestyle = Flatten[Table[0, Length[stedges]], toppart[[2, 2]], bottompart[[2, 2]]];
                  edgestyle = edgestyle / Max[edgestyle];
                  edgestyle = Thread[edges -> Flatten[cfunc[1 - #] & /@ edgestyle]];
                  dstyle = cfunc[1]
                  ];
                  Graph[vert, edges, nopts, VertexCoordinates->CirclePoints[1,0,Length[vert]], VertexLabels->labels,
                  EdgeShapeFunction->(BSplineCurve[#1[[1]],0,0,#1[[2]], SplineWeights->2,EuclideanDistance@@#,2]&),
                  PerformanceGoal->"Speed", Epilog->dstyle, Circle[], VertexShapeFunction -> "Point", EdgeStyle -> edgestyle, VertexStyle -> dstyle]
                  ]


                  Example:



                  FareyDiagram[4]


                  enter image description here



                  FareyDiagram[6, 4, ColorFunction -> Hue, 
                  VertexLabelStyle -> Darker[Red]]


                  enter image description here






                  share|improve this answer











                  $endgroup$



                  Using Graph with a bit of coding:



                  addPoint[p : h_[a_,b_], q : h_[c_,d_], i_] :=
                  With[np = h[a + c, b + d], Sow[p [UndirectedEdge] np, np [UndirectedEdge] q]; Sow[i, i, "Depth"]; p, np, q]

                  addPoint[p : h_[a_,b_], q : h_[-1][c_,d_], i_] :=
                  With[np = h[-1][a + c, b + d], Sow[p [UndirectedEdge] np, np [UndirectedEdge] q]; Sow[i, i, "Depth"]; p, np, q]

                  addPoint[p : h_[-1][a_,b_], q : h_[c_,d_], i_] :=
                  With[np = h[-1][a + c, b + d], Sow[p [UndirectedEdge] np, np [UndirectedEdge] q]; Sow[i, i, "Depth"]; p, np, q]

                  addPoint[p : h_[-1][a_,b_], q : h_[-1][c_,d_], i_] :=
                  With[np = h[-1][a + c, b + d], Sow[p [UndirectedEdge] np, np [UndirectedEdge] q]; Sow[i, i, "Depth"]; p, np, q]

                  fLabel[fr_, angle_] :=
                  With[tangle=ArcTan@@angle, Placed[fLabel[fr], AngleVector[1/2, 1/2, .7, #] & /@tangle, tangle+Pi]]

                  fLabel[h_[a_, b_]] := ToString[a] ~~ "/" ~~ ToString[b]
                  fLabel[h_[-1][a_, b_]] := "-" ~~ ToString[a] ~~ "/" ~~ ToString[b]

                  FareyDiagram[n_Integer, d_Integer: 1, opts___?OptionQ] :=
                  Block[fr, top, bottom, stedges, toppart, bottompart, vert, edges, coords, labels, labpos, cfunc, i, edgestyle, dstyle, nopts,
                  cfunc = ColorFunction /. Flatten[opts] /. ColorFunction -> Automatic;
                  nopts = FilterRules[Flatten[opts], Options[Graph]];
                  top = fr[0,1], fr[1,1], fr[1,0];
                  bottom = fr[1,0], fr[-1][1,1], fr[0,1];
                  stedges = UndirectedEdge@@@Join[Partition[top, 2, 1], Partition[bottom, 2, 1], fr[0, 1],fr[1, 0]];
                  i = 0;toppart = Reap[Nest[(i++; Split[Flatten[addPoint[#, i] & /@ Partition[#, 2, 1],1]][[All,1]])&, top, n]];
                  i = 0;bottompart = Reap[Nest[(i++; Split[Flatten[addPoint[#, i] & /@ Partition[#,2,1],1]][[All,1]])&,bottom, n]];
                  vert = Join[toppart[[1]], bottompart[[1, 2;;-2]]];
                  edges = Flatten[stedges, toppart[[2, 1]], bottompart[[2, 1]]];
                  coords = CirclePoints[1,0,Length[vert]];
                  labpos = Range[1, Length[vert], 2 ^ (d - 1)];
                  labels = Thread[vert[[labpos]]->fLabel@@@Transpose[vert,coords][[labpos]]];
                  edgestyle = Black;
                  dstyle = Black;
                  If[cfunc =!= Automatic,
                  edgestyle = Flatten[Table[0, Length[stedges]], toppart[[2, 2]], bottompart[[2, 2]]];
                  edgestyle = edgestyle / Max[edgestyle];
                  edgestyle = Thread[edges -> Flatten[cfunc[1 - #] & /@ edgestyle]];
                  dstyle = cfunc[1]
                  ];
                  Graph[vert, edges, nopts, VertexCoordinates->CirclePoints[1,0,Length[vert]], VertexLabels->labels,
                  EdgeShapeFunction->(BSplineCurve[#1[[1]],0,0,#1[[2]], SplineWeights->2,EuclideanDistance@@#,2]&),
                  PerformanceGoal->"Speed", Epilog->dstyle, Circle[], VertexShapeFunction -> "Point", EdgeStyle -> edgestyle, VertexStyle -> dstyle]
                  ]


                  Example:



                  FareyDiagram[4]


                  enter image description here



                  FareyDiagram[6, 4, ColorFunction -> Hue, 
                  VertexLabelStyle -> Darker[Red]]


                  enter image description here







                  share|improve this answer














                  share|improve this answer



                  share|improve this answer








                  edited 9 hours ago

























                  answered 10 hours ago









                  halmirhalmir

                  10.7k2544




                  10.7k2544




















                      Gustavo Rubiano is a new contributor. Be nice, and check out our Code of Conduct.









                      draft saved

                      draft discarded


















                      Gustavo Rubiano is a new contributor. Be nice, and check out our Code of Conduct.












                      Gustavo Rubiano is a new contributor. Be nice, and check out our Code of Conduct.











                      Gustavo Rubiano is a new contributor. Be nice, and check out our Code of Conduct.














                      Thanks for contributing an answer to Mathematica Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f194838%2fhow-can-i-plot-a-farey-diagram%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Reverse int within the 32-bit signed integer range: [−2^31, 2^31 − 1]Combining two 32-bit integers into one 64-bit integerDetermine if an int is within rangeLossy packing 32 bit integer to 16 bitComputing the square root of a 64-bit integerKeeping integer addition within boundsSafe multiplication of two 64-bit signed integersLeetcode 10: Regular Expression MatchingSigned integer-to-ascii x86_64 assembler macroReverse the digits of an Integer“Add two numbers given in reverse order from a linked list”

                      Category:Fedor von Bock Media in category "Fedor von Bock"Navigation menuUpload mediaISNI: 0000 0000 5511 3417VIAF ID: 24712551GND ID: 119294796Library of Congress authority ID: n96068363BnF ID: 12534305fSUDOC authorities ID: 034604189Open Library ID: OL338253ANKCR AUT ID: jn19990000869National Library of Israel ID: 000514068National Thesaurus for Author Names ID: 341574317ReasonatorScholiaStatistics

                      Kiel Indholdsfortegnelse Historie | Transport og færgeforbindelser | Sejlsport og anden sport | Kultur | Kendte personer fra Kiel | Noter | Litteratur | Eksterne henvisninger | Navigationsmenuwww.kiel.de54°19′31″N 10°8′26″Ø / 54.32528°N 10.14056°Ø / 54.32528; 10.14056Oberbürgermeister Dr. Ulf Kämpferwww.statistik-nord.deDen danske Stats StatistikKiels hjemmesiderrrWorldCat312794080n790547494030481-4