Vector calculus integration identity problem The Next CEO of Stack Overflow$LaTeX$ format copy problemNumerical-Symbolical Integration (Calculus)Is it possible to do vector calculus in Mathematica?Dipolar magnetic field lines inside a cylinderComparing unit normal definition in calculus with FrenetSerretSystemNon-Newtonian calculusSymbolic representation of vector functionmatrix calculus with types (similar to matrixcalculus.org)How do I verify a vector identity using Mathematica?Einstein summation convention for symbolic vector calculusVector calculus with index notation
What would be the main consequences for a country leaving the WTO?
From jafe to El-Guest
Help understanding this unsettling image of Titan, Epimetheus, and Saturn's rings?
It is correct to match light sources with the same color temperature?
Reshaping json / reparing json inside shell script (remove trailing comma)
Lucky Feat: How can "more than one creature spend a luck point to influence the outcome of a roll"?
Is a distribution that is normal, but highly skewed, considered Gaussian?
Can you teleport closer to a creature you are Frightened of?
How did Beeri the Hittite come up with naming his daughter Yehudit?
What does "shotgun unity" refer to here in this sentence?
Point distance program written without a framework
My ex-girlfriend uses my Apple ID to login to her iPad, do I have to give her my Apple ID password to reset it?
Does Germany produce more waste than the US?
Players Circumventing the limitations of Wish
Is there an equivalent of cd - for cp or mv
Defamation due to breach of confidentiality
Expressing the idea of having a very busy time
Yu-Gi-Oh cards in Python 3
Can I board the first leg of the flight without having final country's visa?
How do I fit a non linear curve?
What CSS properties can the br tag have?
Could a dragon use its wings to swim?
Aggressive Under-Indexing and no data for missing index
In the "Harry Potter and the Order of the Phoenix" video game, what potion is used to sabotage Umbridge's speakers?
Vector calculus integration identity problem
The Next CEO of Stack Overflow$LaTeX$ format copy problemNumerical-Symbolical Integration (Calculus)Is it possible to do vector calculus in Mathematica?Dipolar magnetic field lines inside a cylinderComparing unit normal definition in calculus with FrenetSerretSystemNon-Newtonian calculusSymbolic representation of vector functionmatrix calculus with types (similar to matrixcalculus.org)How do I verify a vector identity using Mathematica?Einstein summation convention for symbolic vector calculusVector calculus with index notation
$begingroup$
This is a follow up from another post. I was using the integration symbols available in the Basic Math Assistant palette.
I am new to vector calculus operations. There is a known identity found in my textbook.
$$qquad int _4 pi hats (hatscdot A) d omega=frac4 pi3A$$
I have no idea how to do this type of integration. This is what I tried, but it returns a disaster:
Integrate[s*(Dot[s, A]), s, 0, 4 π]
Also without success:
Integrate[Sin[θ], Cos[θ]*(Dot[Sin[θ], Cos[θ], a1, a2]), θ, 0, 4 π]
It is obvious that I am doing something fundamentally not correct. I go to the documentation on Vector Calculus, but it does not offer much in substance or examples. How do you enter the integral expression shown above in order to return the identity in the right?
Update
In response to comments, here is a copy of the text. This is from page 10 of Optical-Thermal Response of Laser-Irradiated Tissue.
$omega$ is the surface area of a sphere in steradians. $hat s$ is the directional vector of a pencil of radiation located inside the sphere
symbolic vector-calculus
$endgroup$
|
show 3 more comments
$begingroup$
This is a follow up from another post. I was using the integration symbols available in the Basic Math Assistant palette.
I am new to vector calculus operations. There is a known identity found in my textbook.
$$qquad int _4 pi hats (hatscdot A) d omega=frac4 pi3A$$
I have no idea how to do this type of integration. This is what I tried, but it returns a disaster:
Integrate[s*(Dot[s, A]), s, 0, 4 π]
Also without success:
Integrate[Sin[θ], Cos[θ]*(Dot[Sin[θ], Cos[θ], a1, a2]), θ, 0, 4 π]
It is obvious that I am doing something fundamentally not correct. I go to the documentation on Vector Calculus, but it does not offer much in substance or examples. How do you enter the integral expression shown above in order to return the identity in the right?
Update
In response to comments, here is a copy of the text. This is from page 10 of Optical-Thermal Response of Laser-Irradiated Tissue.
$omega$ is the surface area of a sphere in steradians. $hat s$ is the directional vector of a pencil of radiation located inside the sphere
symbolic vector-calculus
$endgroup$
$begingroup$
What are $s$ and $omega$ supposed to be? It might be helpful if you can give an example of the textbook with the formula.
$endgroup$
– J. M. is slightly pensive♦
3 hours ago
2
$begingroup$
Here's my guess:With[s = x, y, z, A = A1, A2, A3, Integrate[s (s.A), s [Element] Sphere[]] ]
--- or this:With[s = x, y, z, A = A1, A2, A3, Integrate[s (s.A), s [Element] Sphere[]] == 4 Pi/3 A ]
$endgroup$
– Michael E2
3 hours ago
$begingroup$
@Michael, yes, that does seem to be it. This is why people should always define what their variables mean in their formulae.
$endgroup$
– J. M. is slightly pensive♦
3 hours ago
$begingroup$
@Michael E2 please post it as an answear for upvote
$endgroup$
– Jose Enrique Calderon
2 hours ago
1
$begingroup$
I've never seen this author's notation. My guess is that $int_4picdots$ means the integral over the sphere of measure $4pi$, i.e., the unit sphere.
$endgroup$
– Michael E2
2 hours ago
|
show 3 more comments
$begingroup$
This is a follow up from another post. I was using the integration symbols available in the Basic Math Assistant palette.
I am new to vector calculus operations. There is a known identity found in my textbook.
$$qquad int _4 pi hats (hatscdot A) d omega=frac4 pi3A$$
I have no idea how to do this type of integration. This is what I tried, but it returns a disaster:
Integrate[s*(Dot[s, A]), s, 0, 4 π]
Also without success:
Integrate[Sin[θ], Cos[θ]*(Dot[Sin[θ], Cos[θ], a1, a2]), θ, 0, 4 π]
It is obvious that I am doing something fundamentally not correct. I go to the documentation on Vector Calculus, but it does not offer much in substance or examples. How do you enter the integral expression shown above in order to return the identity in the right?
Update
In response to comments, here is a copy of the text. This is from page 10 of Optical-Thermal Response of Laser-Irradiated Tissue.
$omega$ is the surface area of a sphere in steradians. $hat s$ is the directional vector of a pencil of radiation located inside the sphere
symbolic vector-calculus
$endgroup$
This is a follow up from another post. I was using the integration symbols available in the Basic Math Assistant palette.
I am new to vector calculus operations. There is a known identity found in my textbook.
$$qquad int _4 pi hats (hatscdot A) d omega=frac4 pi3A$$
I have no idea how to do this type of integration. This is what I tried, but it returns a disaster:
Integrate[s*(Dot[s, A]), s, 0, 4 π]
Also without success:
Integrate[Sin[θ], Cos[θ]*(Dot[Sin[θ], Cos[θ], a1, a2]), θ, 0, 4 π]
It is obvious that I am doing something fundamentally not correct. I go to the documentation on Vector Calculus, but it does not offer much in substance or examples. How do you enter the integral expression shown above in order to return the identity in the right?
Update
In response to comments, here is a copy of the text. This is from page 10 of Optical-Thermal Response of Laser-Irradiated Tissue.
$omega$ is the surface area of a sphere in steradians. $hat s$ is the directional vector of a pencil of radiation located inside the sphere
symbolic vector-calculus
symbolic vector-calculus
edited 22 mins ago
J. M. is slightly pensive♦
98.8k10311467
98.8k10311467
asked 3 hours ago
Jose Enrique CalderonJose Enrique Calderon
1,063718
1,063718
$begingroup$
What are $s$ and $omega$ supposed to be? It might be helpful if you can give an example of the textbook with the formula.
$endgroup$
– J. M. is slightly pensive♦
3 hours ago
2
$begingroup$
Here's my guess:With[s = x, y, z, A = A1, A2, A3, Integrate[s (s.A), s [Element] Sphere[]] ]
--- or this:With[s = x, y, z, A = A1, A2, A3, Integrate[s (s.A), s [Element] Sphere[]] == 4 Pi/3 A ]
$endgroup$
– Michael E2
3 hours ago
$begingroup$
@Michael, yes, that does seem to be it. This is why people should always define what their variables mean in their formulae.
$endgroup$
– J. M. is slightly pensive♦
3 hours ago
$begingroup$
@Michael E2 please post it as an answear for upvote
$endgroup$
– Jose Enrique Calderon
2 hours ago
1
$begingroup$
I've never seen this author's notation. My guess is that $int_4picdots$ means the integral over the sphere of measure $4pi$, i.e., the unit sphere.
$endgroup$
– Michael E2
2 hours ago
|
show 3 more comments
$begingroup$
What are $s$ and $omega$ supposed to be? It might be helpful if you can give an example of the textbook with the formula.
$endgroup$
– J. M. is slightly pensive♦
3 hours ago
2
$begingroup$
Here's my guess:With[s = x, y, z, A = A1, A2, A3, Integrate[s (s.A), s [Element] Sphere[]] ]
--- or this:With[s = x, y, z, A = A1, A2, A3, Integrate[s (s.A), s [Element] Sphere[]] == 4 Pi/3 A ]
$endgroup$
– Michael E2
3 hours ago
$begingroup$
@Michael, yes, that does seem to be it. This is why people should always define what their variables mean in their formulae.
$endgroup$
– J. M. is slightly pensive♦
3 hours ago
$begingroup$
@Michael E2 please post it as an answear for upvote
$endgroup$
– Jose Enrique Calderon
2 hours ago
1
$begingroup$
I've never seen this author's notation. My guess is that $int_4picdots$ means the integral over the sphere of measure $4pi$, i.e., the unit sphere.
$endgroup$
– Michael E2
2 hours ago
$begingroup$
What are $s$ and $omega$ supposed to be? It might be helpful if you can give an example of the textbook with the formula.
$endgroup$
– J. M. is slightly pensive♦
3 hours ago
$begingroup$
What are $s$ and $omega$ supposed to be? It might be helpful if you can give an example of the textbook with the formula.
$endgroup$
– J. M. is slightly pensive♦
3 hours ago
2
2
$begingroup$
Here's my guess:
With[s = x, y, z, A = A1, A2, A3, Integrate[s (s.A), s [Element] Sphere[]] ]
--- or this: With[s = x, y, z, A = A1, A2, A3, Integrate[s (s.A), s [Element] Sphere[]] == 4 Pi/3 A ]
$endgroup$
– Michael E2
3 hours ago
$begingroup$
Here's my guess:
With[s = x, y, z, A = A1, A2, A3, Integrate[s (s.A), s [Element] Sphere[]] ]
--- or this: With[s = x, y, z, A = A1, A2, A3, Integrate[s (s.A), s [Element] Sphere[]] == 4 Pi/3 A ]
$endgroup$
– Michael E2
3 hours ago
$begingroup$
@Michael, yes, that does seem to be it. This is why people should always define what their variables mean in their formulae.
$endgroup$
– J. M. is slightly pensive♦
3 hours ago
$begingroup$
@Michael, yes, that does seem to be it. This is why people should always define what their variables mean in their formulae.
$endgroup$
– J. M. is slightly pensive♦
3 hours ago
$begingroup$
@Michael E2 please post it as an answear for upvote
$endgroup$
– Jose Enrique Calderon
2 hours ago
$begingroup$
@Michael E2 please post it as an answear for upvote
$endgroup$
– Jose Enrique Calderon
2 hours ago
1
1
$begingroup$
I've never seen this author's notation. My guess is that $int_4picdots$ means the integral over the sphere of measure $4pi$, i.e., the unit sphere.
$endgroup$
– Michael E2
2 hours ago
$begingroup$
I've never seen this author's notation. My guess is that $int_4picdots$ means the integral over the sphere of measure $4pi$, i.e., the unit sphere.
$endgroup$
– Michael E2
2 hours ago
|
show 3 more comments
1 Answer
1
active
oldest
votes
$begingroup$
Here's my guess:
With[s = x, y, z,
A = A1, A2, A3, Integrate[s (s.A), s ∈ Sphere[]] ]
(* (4 A1 π)/3, (4 A2 π)/3, (4 A3 π)/3 *)
--- or this:
With[s = x, y, z, A = A1, A2, A3,
Integrate[s (s.A), s ∈ Sphere[]] == 4 Pi/3 A ]
(* True *)
$endgroup$
$begingroup$
Why it simply does not work with limits of integration s,0,4Pi
$endgroup$
– Jose Enrique Calderon
2 hours ago
2
$begingroup$
@Jose, the author was being lazy with the limits (basically, shorter than saying "integrate over the whole area of the unit sphere"). It is fine to be lazy in mathematics, but not so much when programming.
$endgroup$
– J. M. is slightly pensive♦
2 hours ago
$begingroup$
@J.M. is slightly pensive Ok.. but why Mathematica function proposed in the answear does not work with With[s = x, y, z, A = A1, A2, A3, Integrate[s (s.A), s,0,4Pi] ]
$endgroup$
– Jose Enrique Calderon
2 hours ago
1
$begingroup$
@Jose The syntaxs, 0, 4 Pi
already implies one-dimensionals
from Mathematica's view, while in the "abuse of notation" used in your reference, $hats$ is implied to be a vector.
$endgroup$
– J. M. is slightly pensive♦
2 hours ago
1
$begingroup$
@Jose: the easiest way is that you have to switch to spherical coordinates if you need to integrate across arbitrary angles. If you insist on keeping yourself to regions, you can useRegionIntersection[]
withSphere[]
and eitherConicHullRegion[]
orHalfSpace[]
.
$endgroup$
– J. M. is slightly pensive♦
2 hours ago
|
show 2 more comments
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "387"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f194347%2fvector-calculus-integration-identity-problem%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Here's my guess:
With[s = x, y, z,
A = A1, A2, A3, Integrate[s (s.A), s ∈ Sphere[]] ]
(* (4 A1 π)/3, (4 A2 π)/3, (4 A3 π)/3 *)
--- or this:
With[s = x, y, z, A = A1, A2, A3,
Integrate[s (s.A), s ∈ Sphere[]] == 4 Pi/3 A ]
(* True *)
$endgroup$
$begingroup$
Why it simply does not work with limits of integration s,0,4Pi
$endgroup$
– Jose Enrique Calderon
2 hours ago
2
$begingroup$
@Jose, the author was being lazy with the limits (basically, shorter than saying "integrate over the whole area of the unit sphere"). It is fine to be lazy in mathematics, but not so much when programming.
$endgroup$
– J. M. is slightly pensive♦
2 hours ago
$begingroup$
@J.M. is slightly pensive Ok.. but why Mathematica function proposed in the answear does not work with With[s = x, y, z, A = A1, A2, A3, Integrate[s (s.A), s,0,4Pi] ]
$endgroup$
– Jose Enrique Calderon
2 hours ago
1
$begingroup$
@Jose The syntaxs, 0, 4 Pi
already implies one-dimensionals
from Mathematica's view, while in the "abuse of notation" used in your reference, $hats$ is implied to be a vector.
$endgroup$
– J. M. is slightly pensive♦
2 hours ago
1
$begingroup$
@Jose: the easiest way is that you have to switch to spherical coordinates if you need to integrate across arbitrary angles. If you insist on keeping yourself to regions, you can useRegionIntersection[]
withSphere[]
and eitherConicHullRegion[]
orHalfSpace[]
.
$endgroup$
– J. M. is slightly pensive♦
2 hours ago
|
show 2 more comments
$begingroup$
Here's my guess:
With[s = x, y, z,
A = A1, A2, A3, Integrate[s (s.A), s ∈ Sphere[]] ]
(* (4 A1 π)/3, (4 A2 π)/3, (4 A3 π)/3 *)
--- or this:
With[s = x, y, z, A = A1, A2, A3,
Integrate[s (s.A), s ∈ Sphere[]] == 4 Pi/3 A ]
(* True *)
$endgroup$
$begingroup$
Why it simply does not work with limits of integration s,0,4Pi
$endgroup$
– Jose Enrique Calderon
2 hours ago
2
$begingroup$
@Jose, the author was being lazy with the limits (basically, shorter than saying "integrate over the whole area of the unit sphere"). It is fine to be lazy in mathematics, but not so much when programming.
$endgroup$
– J. M. is slightly pensive♦
2 hours ago
$begingroup$
@J.M. is slightly pensive Ok.. but why Mathematica function proposed in the answear does not work with With[s = x, y, z, A = A1, A2, A3, Integrate[s (s.A), s,0,4Pi] ]
$endgroup$
– Jose Enrique Calderon
2 hours ago
1
$begingroup$
@Jose The syntaxs, 0, 4 Pi
already implies one-dimensionals
from Mathematica's view, while in the "abuse of notation" used in your reference, $hats$ is implied to be a vector.
$endgroup$
– J. M. is slightly pensive♦
2 hours ago
1
$begingroup$
@Jose: the easiest way is that you have to switch to spherical coordinates if you need to integrate across arbitrary angles. If you insist on keeping yourself to regions, you can useRegionIntersection[]
withSphere[]
and eitherConicHullRegion[]
orHalfSpace[]
.
$endgroup$
– J. M. is slightly pensive♦
2 hours ago
|
show 2 more comments
$begingroup$
Here's my guess:
With[s = x, y, z,
A = A1, A2, A3, Integrate[s (s.A), s ∈ Sphere[]] ]
(* (4 A1 π)/3, (4 A2 π)/3, (4 A3 π)/3 *)
--- or this:
With[s = x, y, z, A = A1, A2, A3,
Integrate[s (s.A), s ∈ Sphere[]] == 4 Pi/3 A ]
(* True *)
$endgroup$
Here's my guess:
With[s = x, y, z,
A = A1, A2, A3, Integrate[s (s.A), s ∈ Sphere[]] ]
(* (4 A1 π)/3, (4 A2 π)/3, (4 A3 π)/3 *)
--- or this:
With[s = x, y, z, A = A1, A2, A3,
Integrate[s (s.A), s ∈ Sphere[]] == 4 Pi/3 A ]
(* True *)
answered 2 hours ago
Michael E2Michael E2
150k12203482
150k12203482
$begingroup$
Why it simply does not work with limits of integration s,0,4Pi
$endgroup$
– Jose Enrique Calderon
2 hours ago
2
$begingroup$
@Jose, the author was being lazy with the limits (basically, shorter than saying "integrate over the whole area of the unit sphere"). It is fine to be lazy in mathematics, but not so much when programming.
$endgroup$
– J. M. is slightly pensive♦
2 hours ago
$begingroup$
@J.M. is slightly pensive Ok.. but why Mathematica function proposed in the answear does not work with With[s = x, y, z, A = A1, A2, A3, Integrate[s (s.A), s,0,4Pi] ]
$endgroup$
– Jose Enrique Calderon
2 hours ago
1
$begingroup$
@Jose The syntaxs, 0, 4 Pi
already implies one-dimensionals
from Mathematica's view, while in the "abuse of notation" used in your reference, $hats$ is implied to be a vector.
$endgroup$
– J. M. is slightly pensive♦
2 hours ago
1
$begingroup$
@Jose: the easiest way is that you have to switch to spherical coordinates if you need to integrate across arbitrary angles. If you insist on keeping yourself to regions, you can useRegionIntersection[]
withSphere[]
and eitherConicHullRegion[]
orHalfSpace[]
.
$endgroup$
– J. M. is slightly pensive♦
2 hours ago
|
show 2 more comments
$begingroup$
Why it simply does not work with limits of integration s,0,4Pi
$endgroup$
– Jose Enrique Calderon
2 hours ago
2
$begingroup$
@Jose, the author was being lazy with the limits (basically, shorter than saying "integrate over the whole area of the unit sphere"). It is fine to be lazy in mathematics, but not so much when programming.
$endgroup$
– J. M. is slightly pensive♦
2 hours ago
$begingroup$
@J.M. is slightly pensive Ok.. but why Mathematica function proposed in the answear does not work with With[s = x, y, z, A = A1, A2, A3, Integrate[s (s.A), s,0,4Pi] ]
$endgroup$
– Jose Enrique Calderon
2 hours ago
1
$begingroup$
@Jose The syntaxs, 0, 4 Pi
already implies one-dimensionals
from Mathematica's view, while in the "abuse of notation" used in your reference, $hats$ is implied to be a vector.
$endgroup$
– J. M. is slightly pensive♦
2 hours ago
1
$begingroup$
@Jose: the easiest way is that you have to switch to spherical coordinates if you need to integrate across arbitrary angles. If you insist on keeping yourself to regions, you can useRegionIntersection[]
withSphere[]
and eitherConicHullRegion[]
orHalfSpace[]
.
$endgroup$
– J. M. is slightly pensive♦
2 hours ago
$begingroup$
Why it simply does not work with limits of integration s,0,4Pi
$endgroup$
– Jose Enrique Calderon
2 hours ago
$begingroup$
Why it simply does not work with limits of integration s,0,4Pi
$endgroup$
– Jose Enrique Calderon
2 hours ago
2
2
$begingroup$
@Jose, the author was being lazy with the limits (basically, shorter than saying "integrate over the whole area of the unit sphere"). It is fine to be lazy in mathematics, but not so much when programming.
$endgroup$
– J. M. is slightly pensive♦
2 hours ago
$begingroup$
@Jose, the author was being lazy with the limits (basically, shorter than saying "integrate over the whole area of the unit sphere"). It is fine to be lazy in mathematics, but not so much when programming.
$endgroup$
– J. M. is slightly pensive♦
2 hours ago
$begingroup$
@J.M. is slightly pensive Ok.. but why Mathematica function proposed in the answear does not work with With[s = x, y, z, A = A1, A2, A3, Integrate[s (s.A), s,0,4Pi] ]
$endgroup$
– Jose Enrique Calderon
2 hours ago
$begingroup$
@J.M. is slightly pensive Ok.. but why Mathematica function proposed in the answear does not work with With[s = x, y, z, A = A1, A2, A3, Integrate[s (s.A), s,0,4Pi] ]
$endgroup$
– Jose Enrique Calderon
2 hours ago
1
1
$begingroup$
@Jose The syntax
s, 0, 4 Pi
already implies one-dimensional s
from Mathematica's view, while in the "abuse of notation" used in your reference, $hats$ is implied to be a vector.$endgroup$
– J. M. is slightly pensive♦
2 hours ago
$begingroup$
@Jose The syntax
s, 0, 4 Pi
already implies one-dimensional s
from Mathematica's view, while in the "abuse of notation" used in your reference, $hats$ is implied to be a vector.$endgroup$
– J. M. is slightly pensive♦
2 hours ago
1
1
$begingroup$
@Jose: the easiest way is that you have to switch to spherical coordinates if you need to integrate across arbitrary angles. If you insist on keeping yourself to regions, you can use
RegionIntersection[]
with Sphere[]
and either ConicHullRegion[]
or HalfSpace[]
.$endgroup$
– J. M. is slightly pensive♦
2 hours ago
$begingroup$
@Jose: the easiest way is that you have to switch to spherical coordinates if you need to integrate across arbitrary angles. If you insist on keeping yourself to regions, you can use
RegionIntersection[]
with Sphere[]
and either ConicHullRegion[]
or HalfSpace[]
.$endgroup$
– J. M. is slightly pensive♦
2 hours ago
|
show 2 more comments
Thanks for contributing an answer to Mathematica Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f194347%2fvector-calculus-integration-identity-problem%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
What are $s$ and $omega$ supposed to be? It might be helpful if you can give an example of the textbook with the formula.
$endgroup$
– J. M. is slightly pensive♦
3 hours ago
2
$begingroup$
Here's my guess:
With[s = x, y, z, A = A1, A2, A3, Integrate[s (s.A), s [Element] Sphere[]] ]
--- or this:With[s = x, y, z, A = A1, A2, A3, Integrate[s (s.A), s [Element] Sphere[]] == 4 Pi/3 A ]
$endgroup$
– Michael E2
3 hours ago
$begingroup$
@Michael, yes, that does seem to be it. This is why people should always define what their variables mean in their formulae.
$endgroup$
– J. M. is slightly pensive♦
3 hours ago
$begingroup$
@Michael E2 please post it as an answear for upvote
$endgroup$
– Jose Enrique Calderon
2 hours ago
1
$begingroup$
I've never seen this author's notation. My guess is that $int_4picdots$ means the integral over the sphere of measure $4pi$, i.e., the unit sphere.
$endgroup$
– Michael E2
2 hours ago