Finding the area between two curves with Integrate The 2019 Stack Overflow Developer Survey Results Are InHow to evaluate this indefinite integral $csc(4x)sin(x)$Finding the centroid of the area between two curvesRevolving the area between two functions about an axisArea enclosed by two functionsComputing the area between two curvesIntegrate to calculate enclosed areaInteresting discrepencies between integrate functionsFinding the volume enclosed by two surfaces of revolutionFinding an area enclosed by 4 curvesApproximate the relationship between 6 nonlinear functions involving elliptic integrals

Is an up-to-date browser secure on an out-of-date OS?

What is the meaning of Triage in Cybersec world?

How can I have a shield and a way of attacking with a ranged weapon at the same time?

Output the Arecibo Message

Button changing its text & action. Good or terrible?

What is this business jet?

Can I have a signal generator on while it's not connected?

What is the motivation for a law requiring 2 parties to consent for recording a conversation

Is it ok to offer lower paid work as a trial period before negotiating for a full-time job?

Short story: child made less intelligent and less attractive

What is the most efficient way to store a numeric range?

Does adding complexity mean a more secure cipher?

Match Roman Numerals

For what reasons would an animal species NOT cross a *horizontal* land bridge?

Geography at the pixel level

Correct punctuation for showing a character's confusion

Why can't devices on different VLANs, but on the same subnet, communicate?

How do I free up internal storage if I don't have any apps downloaded?

How can I define good in a religion that claims no moral authority?

Will it cause any balance problems to have PCs level up and gain the benefits of a long rest mid-fight?

What is this sharp, curved notch on my knife for?

Getting crown tickets for Statue of Liberty

Is bread bad for ducks?

Why doesn't UInt have a toDouble()?



Finding the area between two curves with Integrate



The 2019 Stack Overflow Developer Survey Results Are InHow to evaluate this indefinite integral $csc(4x)sin(x)$Finding the centroid of the area between two curvesRevolving the area between two functions about an axisArea enclosed by two functionsComputing the area between two curvesIntegrate to calculate enclosed areaInteresting discrepencies between integrate functionsFinding the volume enclosed by two surfaces of revolutionFinding an area enclosed by 4 curvesApproximate the relationship between 6 nonlinear functions involving elliptic integrals










2












$begingroup$


I'm trying to solve and approximate the area between the two graphs. Right now, my functions are stored as



f[x_] := 3 Sin[x]
g[x_] := x - 1


and then I tried to integrate by evaluating



Integrate[Abs[f[x] - g[x]], x]


Instead of getting an answer, I just get the exact same thing I inputted



Integrate[Abs[f[x] - g[x]], x]


How do I fix this?










share|improve this question









New contributor




Ryan is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    You can format inline code and code blocks by selecting the code and clicking the button above the edit window. The edit window help button ? is useful for learning how to format your questions and answers. You may also find this meta Q&A helpful
    $endgroup$
    – Michael E2
    2 hours ago















2












$begingroup$


I'm trying to solve and approximate the area between the two graphs. Right now, my functions are stored as



f[x_] := 3 Sin[x]
g[x_] := x - 1


and then I tried to integrate by evaluating



Integrate[Abs[f[x] - g[x]], x]


Instead of getting an answer, I just get the exact same thing I inputted



Integrate[Abs[f[x] - g[x]], x]


How do I fix this?










share|improve this question









New contributor




Ryan is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    You can format inline code and code blocks by selecting the code and clicking the button above the edit window. The edit window help button ? is useful for learning how to format your questions and answers. You may also find this meta Q&A helpful
    $endgroup$
    – Michael E2
    2 hours ago













2












2








2





$begingroup$


I'm trying to solve and approximate the area between the two graphs. Right now, my functions are stored as



f[x_] := 3 Sin[x]
g[x_] := x - 1


and then I tried to integrate by evaluating



Integrate[Abs[f[x] - g[x]], x]


Instead of getting an answer, I just get the exact same thing I inputted



Integrate[Abs[f[x] - g[x]], x]


How do I fix this?










share|improve this question









New contributor




Ryan is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




I'm trying to solve and approximate the area between the two graphs. Right now, my functions are stored as



f[x_] := 3 Sin[x]
g[x_] := x - 1


and then I tried to integrate by evaluating



Integrate[Abs[f[x] - g[x]], x]


Instead of getting an answer, I just get the exact same thing I inputted



Integrate[Abs[f[x] - g[x]], x]


How do I fix this?







calculus-and-analysis






share|improve this question









New contributor




Ryan is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|improve this question









New contributor




Ryan is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|improve this question




share|improve this question








edited 2 hours ago









m_goldberg

88.6k873200




88.6k873200






New contributor




Ryan is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 2 hours ago









RyanRyan

111




111




New contributor




Ryan is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Ryan is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Ryan is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











  • $begingroup$
    You can format inline code and code blocks by selecting the code and clicking the button above the edit window. The edit window help button ? is useful for learning how to format your questions and answers. You may also find this meta Q&A helpful
    $endgroup$
    – Michael E2
    2 hours ago
















  • $begingroup$
    You can format inline code and code blocks by selecting the code and clicking the button above the edit window. The edit window help button ? is useful for learning how to format your questions and answers. You may also find this meta Q&A helpful
    $endgroup$
    – Michael E2
    2 hours ago















$begingroup$
You can format inline code and code blocks by selecting the code and clicking the button above the edit window. The edit window help button ? is useful for learning how to format your questions and answers. You may also find this meta Q&A helpful
$endgroup$
– Michael E2
2 hours ago




$begingroup$
You can format inline code and code blocks by selecting the code and clicking the button above the edit window. The edit window help button ? is useful for learning how to format your questions and answers. You may also find this meta Q&A helpful
$endgroup$
– Michael E2
2 hours ago










3 Answers
3






active

oldest

votes


















2












$begingroup$

Use Assumptions:



Integrate[Abs[f[x] - g[x]], x, Assumptions -> x [Element] Reals]


Mathematica graphics



Or try RealAbs instead of Abs:



Integrate[RealAbs[f[x] - g[x]], x]


Mathematica graphics



(They are equivalent antiderivatives.)



To get the area between the graphs, you need also to solve for the points of intersection.



area = Integrate[
Abs[f[x] - g[x]], x, Sequence @@ MinMax[x /. Solve[f[x] == g[x], x, Reals]]]


Mathematica graphics



The area is approximately:



N[area]
(* 5.57475 *)





share|improve this answer











$endgroup$












  • $begingroup$
    RealAbs is awesome to know about! :O
    $endgroup$
    – Kagaratsch
    2 hours ago


















1












$begingroup$

You need to add assumptions, like this



 Integrate[Abs[f[x] - g[x]], x, Assumptions :> Element[x, Reals]]


Mathematica graphics






share|improve this answer









$endgroup$




















    0












    $begingroup$

    Assuming your functions



    f[x_] := 3 Sin[x] 
    g[x_] := x - 1


    are real valued, you can use square root of square to parametrize the absolute value. This then gives:



    Integrate[Sqrt[(f[x] - g[x])^2], x]



    (((-2 + x) x + 6 Cos[x]) Sqrt[(-1 + x - 3 Sin[x])^2])/(2 (-1 + x -
    3 Sin[x]))







    share|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "387"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: false,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: null,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );






      Ryan is a new contributor. Be nice, and check out our Code of Conduct.









      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f195049%2ffinding-the-area-between-two-curves-with-integrate%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2












      $begingroup$

      Use Assumptions:



      Integrate[Abs[f[x] - g[x]], x, Assumptions -> x [Element] Reals]


      Mathematica graphics



      Or try RealAbs instead of Abs:



      Integrate[RealAbs[f[x] - g[x]], x]


      Mathematica graphics



      (They are equivalent antiderivatives.)



      To get the area between the graphs, you need also to solve for the points of intersection.



      area = Integrate[
      Abs[f[x] - g[x]], x, Sequence @@ MinMax[x /. Solve[f[x] == g[x], x, Reals]]]


      Mathematica graphics



      The area is approximately:



      N[area]
      (* 5.57475 *)





      share|improve this answer











      $endgroup$












      • $begingroup$
        RealAbs is awesome to know about! :O
        $endgroup$
        – Kagaratsch
        2 hours ago















      2












      $begingroup$

      Use Assumptions:



      Integrate[Abs[f[x] - g[x]], x, Assumptions -> x [Element] Reals]


      Mathematica graphics



      Or try RealAbs instead of Abs:



      Integrate[RealAbs[f[x] - g[x]], x]


      Mathematica graphics



      (They are equivalent antiderivatives.)



      To get the area between the graphs, you need also to solve for the points of intersection.



      area = Integrate[
      Abs[f[x] - g[x]], x, Sequence @@ MinMax[x /. Solve[f[x] == g[x], x, Reals]]]


      Mathematica graphics



      The area is approximately:



      N[area]
      (* 5.57475 *)





      share|improve this answer











      $endgroup$












      • $begingroup$
        RealAbs is awesome to know about! :O
        $endgroup$
        – Kagaratsch
        2 hours ago













      2












      2








      2





      $begingroup$

      Use Assumptions:



      Integrate[Abs[f[x] - g[x]], x, Assumptions -> x [Element] Reals]


      Mathematica graphics



      Or try RealAbs instead of Abs:



      Integrate[RealAbs[f[x] - g[x]], x]


      Mathematica graphics



      (They are equivalent antiderivatives.)



      To get the area between the graphs, you need also to solve for the points of intersection.



      area = Integrate[
      Abs[f[x] - g[x]], x, Sequence @@ MinMax[x /. Solve[f[x] == g[x], x, Reals]]]


      Mathematica graphics



      The area is approximately:



      N[area]
      (* 5.57475 *)





      share|improve this answer











      $endgroup$



      Use Assumptions:



      Integrate[Abs[f[x] - g[x]], x, Assumptions -> x [Element] Reals]


      Mathematica graphics



      Or try RealAbs instead of Abs:



      Integrate[RealAbs[f[x] - g[x]], x]


      Mathematica graphics



      (They are equivalent antiderivatives.)



      To get the area between the graphs, you need also to solve for the points of intersection.



      area = Integrate[
      Abs[f[x] - g[x]], x, Sequence @@ MinMax[x /. Solve[f[x] == g[x], x, Reals]]]


      Mathematica graphics



      The area is approximately:



      N[area]
      (* 5.57475 *)






      share|improve this answer














      share|improve this answer



      share|improve this answer








      edited 2 hours ago

























      answered 2 hours ago









      Michael E2Michael E2

      150k12203482




      150k12203482











      • $begingroup$
        RealAbs is awesome to know about! :O
        $endgroup$
        – Kagaratsch
        2 hours ago
















      • $begingroup$
        RealAbs is awesome to know about! :O
        $endgroup$
        – Kagaratsch
        2 hours ago















      $begingroup$
      RealAbs is awesome to know about! :O
      $endgroup$
      – Kagaratsch
      2 hours ago




      $begingroup$
      RealAbs is awesome to know about! :O
      $endgroup$
      – Kagaratsch
      2 hours ago











      1












      $begingroup$

      You need to add assumptions, like this



       Integrate[Abs[f[x] - g[x]], x, Assumptions :> Element[x, Reals]]


      Mathematica graphics






      share|improve this answer









      $endgroup$

















        1












        $begingroup$

        You need to add assumptions, like this



         Integrate[Abs[f[x] - g[x]], x, Assumptions :> Element[x, Reals]]


        Mathematica graphics






        share|improve this answer









        $endgroup$















          1












          1








          1





          $begingroup$

          You need to add assumptions, like this



           Integrate[Abs[f[x] - g[x]], x, Assumptions :> Element[x, Reals]]


          Mathematica graphics






          share|improve this answer









          $endgroup$



          You need to add assumptions, like this



           Integrate[Abs[f[x] - g[x]], x, Assumptions :> Element[x, Reals]]


          Mathematica graphics







          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered 2 hours ago









          NasserNasser

          58.7k490206




          58.7k490206





















              0












              $begingroup$

              Assuming your functions



              f[x_] := 3 Sin[x] 
              g[x_] := x - 1


              are real valued, you can use square root of square to parametrize the absolute value. This then gives:



              Integrate[Sqrt[(f[x] - g[x])^2], x]



              (((-2 + x) x + 6 Cos[x]) Sqrt[(-1 + x - 3 Sin[x])^2])/(2 (-1 + x -
              3 Sin[x]))







              share|improve this answer









              $endgroup$

















                0












                $begingroup$

                Assuming your functions



                f[x_] := 3 Sin[x] 
                g[x_] := x - 1


                are real valued, you can use square root of square to parametrize the absolute value. This then gives:



                Integrate[Sqrt[(f[x] - g[x])^2], x]



                (((-2 + x) x + 6 Cos[x]) Sqrt[(-1 + x - 3 Sin[x])^2])/(2 (-1 + x -
                3 Sin[x]))







                share|improve this answer









                $endgroup$















                  0












                  0








                  0





                  $begingroup$

                  Assuming your functions



                  f[x_] := 3 Sin[x] 
                  g[x_] := x - 1


                  are real valued, you can use square root of square to parametrize the absolute value. This then gives:



                  Integrate[Sqrt[(f[x] - g[x])^2], x]



                  (((-2 + x) x + 6 Cos[x]) Sqrt[(-1 + x - 3 Sin[x])^2])/(2 (-1 + x -
                  3 Sin[x]))







                  share|improve this answer









                  $endgroup$



                  Assuming your functions



                  f[x_] := 3 Sin[x] 
                  g[x_] := x - 1


                  are real valued, you can use square root of square to parametrize the absolute value. This then gives:



                  Integrate[Sqrt[(f[x] - g[x])^2], x]



                  (((-2 + x) x + 6 Cos[x]) Sqrt[(-1 + x - 3 Sin[x])^2])/(2 (-1 + x -
                  3 Sin[x]))








                  share|improve this answer












                  share|improve this answer



                  share|improve this answer










                  answered 2 hours ago









                  KagaratschKagaratsch

                  4,83831348




                  4,83831348




















                      Ryan is a new contributor. Be nice, and check out our Code of Conduct.









                      draft saved

                      draft discarded


















                      Ryan is a new contributor. Be nice, and check out our Code of Conduct.












                      Ryan is a new contributor. Be nice, and check out our Code of Conduct.











                      Ryan is a new contributor. Be nice, and check out our Code of Conduct.














                      Thanks for contributing an answer to Mathematica Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f195049%2ffinding-the-area-between-two-curves-with-integrate%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Reverse int within the 32-bit signed integer range: [−2^31, 2^31 − 1]Combining two 32-bit integers into one 64-bit integerDetermine if an int is within rangeLossy packing 32 bit integer to 16 bitComputing the square root of a 64-bit integerKeeping integer addition within boundsSafe multiplication of two 64-bit signed integersLeetcode 10: Regular Expression MatchingSigned integer-to-ascii x86_64 assembler macroReverse the digits of an Integer“Add two numbers given in reverse order from a linked list”

                      Category:Fedor von Bock Media in category "Fedor von Bock"Navigation menuUpload mediaISNI: 0000 0000 5511 3417VIAF ID: 24712551GND ID: 119294796Library of Congress authority ID: n96068363BnF ID: 12534305fSUDOC authorities ID: 034604189Open Library ID: OL338253ANKCR AUT ID: jn19990000869National Library of Israel ID: 000514068National Thesaurus for Author Names ID: 341574317ReasonatorScholiaStatistics

                      Kiel Indholdsfortegnelse Historie | Transport og færgeforbindelser | Sejlsport og anden sport | Kultur | Kendte personer fra Kiel | Noter | Litteratur | Eksterne henvisninger | Navigationsmenuwww.kiel.de54°19′31″N 10°8′26″Ø / 54.32528°N 10.14056°Ø / 54.32528; 10.14056Oberbürgermeister Dr. Ulf Kämpferwww.statistik-nord.deDen danske Stats StatistikKiels hjemmesiderrrWorldCat312794080n790547494030481-4