Is it correct to say the Neural Networks are an alternative way of performing Maximum Likelihood Estimation? if not, why? The 2019 Stack Overflow Developer Survey Results Are InCan we use MLE to estimate Neural Network weights?Are loss functions what define the identity of each supervised machine learning algorithm?What can we say about the likelihood function, besides using it in maximum likelihood estimation?Why is maximum likelihood estimation considered to be a frequentist techniqueMaximum Likelihood Estimation — why it is used despite being biased in many casesWhat is the objective of maximum likelihood estimation?Maximum Likelihood estimation and the Kalman filterWhy does Maximum Likelihood estimation maximizes probability density instead of probabilityWhy are the Least-Squares and Maximum-Likelihood methods of regression not equivalent when the errors are not normally distributed?the relationship between maximizing the likelihood and minimizing the cross-entropythe meaning of likelihood in maximum likelihood estimationHow to construct a cross-entropy loss for general regression targets?

Dropping list elements from nested list after evaluation

Output the Arecibo Message

Can there be female White Walkers?

How to support a colleague who finds meetings extremely tiring?

Falsification in Math vs Science

Is it ethical to upload a automatically generated paper to a non peer-reviewed site as part of a larger research?

Can a flute soloist sit?

Why couldn't they take pictures of a closer black hole?

Keeping a retro style to sci-fi spaceships?

Straighten subgroup lattice

Why isn't the circumferential light around the M87 black hole's event horizon symmetric?

Is it okay to consider publishing in my first year of PhD?

For what reasons would an animal species NOT cross a *horizontal* land bridge?

I am an eight letter word. What am I?

What is this business jet?

If a sorcerer casts the Banishment spell on a PC while in Avernus, does the PC return to their home plane?

How to charge AirPods to keep battery healthy?

What could be the right powersource for 15 seconds lifespan disposable giant chainsaw?

Loose spokes after only a few rides

APIPA and LAN Broadcast Domain

Are spiders unable to hurt humans, especially very small spiders?

What is the most efficient way to store a numeric range?

How can I define good in a religion that claims no moral authority?

Slides for 30 min~1 hr Skype tenure track application interview



Is it correct to say the Neural Networks are an alternative way of performing Maximum Likelihood Estimation? if not, why?



The 2019 Stack Overflow Developer Survey Results Are InCan we use MLE to estimate Neural Network weights?Are loss functions what define the identity of each supervised machine learning algorithm?What can we say about the likelihood function, besides using it in maximum likelihood estimation?Why is maximum likelihood estimation considered to be a frequentist techniqueMaximum Likelihood Estimation — why it is used despite being biased in many casesWhat is the objective of maximum likelihood estimation?Maximum Likelihood estimation and the Kalman filterWhy does Maximum Likelihood estimation maximizes probability density instead of probabilityWhy are the Least-Squares and Maximum-Likelihood methods of regression not equivalent when the errors are not normally distributed?the relationship between maximizing the likelihood and minimizing the cross-entropythe meaning of likelihood in maximum likelihood estimationHow to construct a cross-entropy loss for general regression targets?



.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








3












$begingroup$


We often say that minimizing the (negative) cross-entropy error is the same as maximizing the likelihood. So can we say that NN are just an alternative way of performing Maximum Likelihood Estimation? if not, why?










share|cite|improve this question







New contributor




aca06 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 1




    $begingroup$
    Possible duplicate of Can we use MLE to estimate Neural Network weights?
    $endgroup$
    – Sycorax
    4 hours ago

















3












$begingroup$


We often say that minimizing the (negative) cross-entropy error is the same as maximizing the likelihood. So can we say that NN are just an alternative way of performing Maximum Likelihood Estimation? if not, why?










share|cite|improve this question







New contributor




aca06 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 1




    $begingroup$
    Possible duplicate of Can we use MLE to estimate Neural Network weights?
    $endgroup$
    – Sycorax
    4 hours ago













3












3








3


2



$begingroup$


We often say that minimizing the (negative) cross-entropy error is the same as maximizing the likelihood. So can we say that NN are just an alternative way of performing Maximum Likelihood Estimation? if not, why?










share|cite|improve this question







New contributor




aca06 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




We often say that minimizing the (negative) cross-entropy error is the same as maximizing the likelihood. So can we say that NN are just an alternative way of performing Maximum Likelihood Estimation? if not, why?







neural-networks maximum-likelihood






share|cite|improve this question







New contributor




aca06 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question







New contributor




aca06 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question






New contributor




aca06 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 6 hours ago









aca06aca06

161




161




New contributor




aca06 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





aca06 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






aca06 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







  • 1




    $begingroup$
    Possible duplicate of Can we use MLE to estimate Neural Network weights?
    $endgroup$
    – Sycorax
    4 hours ago












  • 1




    $begingroup$
    Possible duplicate of Can we use MLE to estimate Neural Network weights?
    $endgroup$
    – Sycorax
    4 hours ago







1




1




$begingroup$
Possible duplicate of Can we use MLE to estimate Neural Network weights?
$endgroup$
– Sycorax
4 hours ago




$begingroup$
Possible duplicate of Can we use MLE to estimate Neural Network weights?
$endgroup$
– Sycorax
4 hours ago










2 Answers
2






active

oldest

votes


















3












$begingroup$

In abstract terms, neural networks are models, or if you prefer, functions with unknown parameters, where we try to learn the parameter by minimizing loss function (not just cross entropy, there are many other possibilities). In general, minimizing loss is in most cases equivalent to maximizing some likelihood function, but as discussed in this thread, it's not that simple.



You cannot say that they are equivalent, because minimizing loss, or maximizing likelihood is a method of finding the parameters, while neural network is the function defined in terms of those parameters.






share|cite|improve this answer









$endgroup$








  • 1




    $begingroup$
    I'm trying to parse the distinction that you draw in the second paragraph. If I understand correctly, you would approve of a statement such as "My neural network model maximizes a certain log-likelihood" but not the statement "Neural networks and maximum likelihood estimators are the same concept." Is this a fair assessment?
    $endgroup$
    – Sycorax
    3 hours ago







  • 1




    $begingroup$
    @Sycorax yes, that is correct. If it is unclear and you have idea for better re-phrasing, feel free to suggest edit.
    $endgroup$
    – Tim
    3 hours ago






  • 1




    $begingroup$
    What if instead, we compare gradient descent and MLE ? It seems to me that they are just two methods for finding the best parameters.
    $endgroup$
    – aca06
    3 hours ago






  • 1




    $begingroup$
    @aca06 gradient descent is an optimization algorithm, MLE is a method of estimating parameters. You can use gradient descent to find minimum of negative likelihood function (or gradient ascent for maximizing likelihood).
    $endgroup$
    – Tim
    3 hours ago


















0












$begingroup$

These are fairly orthogonal topics.



Neural networks are a type of model which has a very large number of parameters. Maximum Likelihood Estimation is a very common method for estimating parameters from a given model and data. Typically, a model will allow you to compute a likelihood function from a model, data and parameter values. Since we don't know what the actual parameter values are, one way of estimating them is to use the value that maximizes the given likelihood. Neural networks are our model, maximum likelihood estimation is one method for estimating the parameters of our model.



One slightly technical note is that often, Maximum Likelihood Estimation is not exactly used in Neural Networks. That is, there are a lot of regularization methods used that imply we're not actually maximizing a likelihood function. These include:



(1) Penalized maximum likelihood. This one is a bit of a cop-out, as it doesn't actually take too much effort to think of Penalized likelihoods as actually just a different likelihood (i.e., one with priors) that one is maximizing.



(2) Random drop out. In especially a lot of the newer architectures, parameter values will randomly be set to 0 during training. This procedure is more definitely outside the realm of maximum likelihood estimation.



(3) Early stopping. It's not the most popular method at all, but one way to prevent overfitting is just to stop the optimization algorithm before it converges. Again, this is technically not maximum likelihood estimation, it's really just an ad-hoc solution to overfitting.



(4) Bayesian methods, probably the most common alternative to Maximum Likelihood Estimation in the statistics world, are also used for estimating the parameter values of a neural network. However, this is often too computationally intensive for large networks.






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "65"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );






    aca06 is a new contributor. Be nice, and check out our Code of Conduct.









    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f402511%2fis-it-correct-to-say-the-neural-networks-are-an-alternative-way-of-performing-ma%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3












    $begingroup$

    In abstract terms, neural networks are models, or if you prefer, functions with unknown parameters, where we try to learn the parameter by minimizing loss function (not just cross entropy, there are many other possibilities). In general, minimizing loss is in most cases equivalent to maximizing some likelihood function, but as discussed in this thread, it's not that simple.



    You cannot say that they are equivalent, because minimizing loss, or maximizing likelihood is a method of finding the parameters, while neural network is the function defined in terms of those parameters.






    share|cite|improve this answer









    $endgroup$








    • 1




      $begingroup$
      I'm trying to parse the distinction that you draw in the second paragraph. If I understand correctly, you would approve of a statement such as "My neural network model maximizes a certain log-likelihood" but not the statement "Neural networks and maximum likelihood estimators are the same concept." Is this a fair assessment?
      $endgroup$
      – Sycorax
      3 hours ago







    • 1




      $begingroup$
      @Sycorax yes, that is correct. If it is unclear and you have idea for better re-phrasing, feel free to suggest edit.
      $endgroup$
      – Tim
      3 hours ago






    • 1




      $begingroup$
      What if instead, we compare gradient descent and MLE ? It seems to me that they are just two methods for finding the best parameters.
      $endgroup$
      – aca06
      3 hours ago






    • 1




      $begingroup$
      @aca06 gradient descent is an optimization algorithm, MLE is a method of estimating parameters. You can use gradient descent to find minimum of negative likelihood function (or gradient ascent for maximizing likelihood).
      $endgroup$
      – Tim
      3 hours ago















    3












    $begingroup$

    In abstract terms, neural networks are models, or if you prefer, functions with unknown parameters, where we try to learn the parameter by minimizing loss function (not just cross entropy, there are many other possibilities). In general, minimizing loss is in most cases equivalent to maximizing some likelihood function, but as discussed in this thread, it's not that simple.



    You cannot say that they are equivalent, because minimizing loss, or maximizing likelihood is a method of finding the parameters, while neural network is the function defined in terms of those parameters.






    share|cite|improve this answer









    $endgroup$








    • 1




      $begingroup$
      I'm trying to parse the distinction that you draw in the second paragraph. If I understand correctly, you would approve of a statement such as "My neural network model maximizes a certain log-likelihood" but not the statement "Neural networks and maximum likelihood estimators are the same concept." Is this a fair assessment?
      $endgroup$
      – Sycorax
      3 hours ago







    • 1




      $begingroup$
      @Sycorax yes, that is correct. If it is unclear and you have idea for better re-phrasing, feel free to suggest edit.
      $endgroup$
      – Tim
      3 hours ago






    • 1




      $begingroup$
      What if instead, we compare gradient descent and MLE ? It seems to me that they are just two methods for finding the best parameters.
      $endgroup$
      – aca06
      3 hours ago






    • 1




      $begingroup$
      @aca06 gradient descent is an optimization algorithm, MLE is a method of estimating parameters. You can use gradient descent to find minimum of negative likelihood function (or gradient ascent for maximizing likelihood).
      $endgroup$
      – Tim
      3 hours ago













    3












    3








    3





    $begingroup$

    In abstract terms, neural networks are models, or if you prefer, functions with unknown parameters, where we try to learn the parameter by minimizing loss function (not just cross entropy, there are many other possibilities). In general, minimizing loss is in most cases equivalent to maximizing some likelihood function, but as discussed in this thread, it's not that simple.



    You cannot say that they are equivalent, because minimizing loss, or maximizing likelihood is a method of finding the parameters, while neural network is the function defined in terms of those parameters.






    share|cite|improve this answer









    $endgroup$



    In abstract terms, neural networks are models, or if you prefer, functions with unknown parameters, where we try to learn the parameter by minimizing loss function (not just cross entropy, there are many other possibilities). In general, minimizing loss is in most cases equivalent to maximizing some likelihood function, but as discussed in this thread, it's not that simple.



    You cannot say that they are equivalent, because minimizing loss, or maximizing likelihood is a method of finding the parameters, while neural network is the function defined in terms of those parameters.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered 4 hours ago









    TimTim

    60k9133229




    60k9133229







    • 1




      $begingroup$
      I'm trying to parse the distinction that you draw in the second paragraph. If I understand correctly, you would approve of a statement such as "My neural network model maximizes a certain log-likelihood" but not the statement "Neural networks and maximum likelihood estimators are the same concept." Is this a fair assessment?
      $endgroup$
      – Sycorax
      3 hours ago







    • 1




      $begingroup$
      @Sycorax yes, that is correct. If it is unclear and you have idea for better re-phrasing, feel free to suggest edit.
      $endgroup$
      – Tim
      3 hours ago






    • 1




      $begingroup$
      What if instead, we compare gradient descent and MLE ? It seems to me that they are just two methods for finding the best parameters.
      $endgroup$
      – aca06
      3 hours ago






    • 1




      $begingroup$
      @aca06 gradient descent is an optimization algorithm, MLE is a method of estimating parameters. You can use gradient descent to find minimum of negative likelihood function (or gradient ascent for maximizing likelihood).
      $endgroup$
      – Tim
      3 hours ago












    • 1




      $begingroup$
      I'm trying to parse the distinction that you draw in the second paragraph. If I understand correctly, you would approve of a statement such as "My neural network model maximizes a certain log-likelihood" but not the statement "Neural networks and maximum likelihood estimators are the same concept." Is this a fair assessment?
      $endgroup$
      – Sycorax
      3 hours ago







    • 1




      $begingroup$
      @Sycorax yes, that is correct. If it is unclear and you have idea for better re-phrasing, feel free to suggest edit.
      $endgroup$
      – Tim
      3 hours ago






    • 1




      $begingroup$
      What if instead, we compare gradient descent and MLE ? It seems to me that they are just two methods for finding the best parameters.
      $endgroup$
      – aca06
      3 hours ago






    • 1




      $begingroup$
      @aca06 gradient descent is an optimization algorithm, MLE is a method of estimating parameters. You can use gradient descent to find minimum of negative likelihood function (or gradient ascent for maximizing likelihood).
      $endgroup$
      – Tim
      3 hours ago







    1




    1




    $begingroup$
    I'm trying to parse the distinction that you draw in the second paragraph. If I understand correctly, you would approve of a statement such as "My neural network model maximizes a certain log-likelihood" but not the statement "Neural networks and maximum likelihood estimators are the same concept." Is this a fair assessment?
    $endgroup$
    – Sycorax
    3 hours ago





    $begingroup$
    I'm trying to parse the distinction that you draw in the second paragraph. If I understand correctly, you would approve of a statement such as "My neural network model maximizes a certain log-likelihood" but not the statement "Neural networks and maximum likelihood estimators are the same concept." Is this a fair assessment?
    $endgroup$
    – Sycorax
    3 hours ago





    1




    1




    $begingroup$
    @Sycorax yes, that is correct. If it is unclear and you have idea for better re-phrasing, feel free to suggest edit.
    $endgroup$
    – Tim
    3 hours ago




    $begingroup$
    @Sycorax yes, that is correct. If it is unclear and you have idea for better re-phrasing, feel free to suggest edit.
    $endgroup$
    – Tim
    3 hours ago




    1




    1




    $begingroup$
    What if instead, we compare gradient descent and MLE ? It seems to me that they are just two methods for finding the best parameters.
    $endgroup$
    – aca06
    3 hours ago




    $begingroup$
    What if instead, we compare gradient descent and MLE ? It seems to me that they are just two methods for finding the best parameters.
    $endgroup$
    – aca06
    3 hours ago




    1




    1




    $begingroup$
    @aca06 gradient descent is an optimization algorithm, MLE is a method of estimating parameters. You can use gradient descent to find minimum of negative likelihood function (or gradient ascent for maximizing likelihood).
    $endgroup$
    – Tim
    3 hours ago




    $begingroup$
    @aca06 gradient descent is an optimization algorithm, MLE is a method of estimating parameters. You can use gradient descent to find minimum of negative likelihood function (or gradient ascent for maximizing likelihood).
    $endgroup$
    – Tim
    3 hours ago













    0












    $begingroup$

    These are fairly orthogonal topics.



    Neural networks are a type of model which has a very large number of parameters. Maximum Likelihood Estimation is a very common method for estimating parameters from a given model and data. Typically, a model will allow you to compute a likelihood function from a model, data and parameter values. Since we don't know what the actual parameter values are, one way of estimating them is to use the value that maximizes the given likelihood. Neural networks are our model, maximum likelihood estimation is one method for estimating the parameters of our model.



    One slightly technical note is that often, Maximum Likelihood Estimation is not exactly used in Neural Networks. That is, there are a lot of regularization methods used that imply we're not actually maximizing a likelihood function. These include:



    (1) Penalized maximum likelihood. This one is a bit of a cop-out, as it doesn't actually take too much effort to think of Penalized likelihoods as actually just a different likelihood (i.e., one with priors) that one is maximizing.



    (2) Random drop out. In especially a lot of the newer architectures, parameter values will randomly be set to 0 during training. This procedure is more definitely outside the realm of maximum likelihood estimation.



    (3) Early stopping. It's not the most popular method at all, but one way to prevent overfitting is just to stop the optimization algorithm before it converges. Again, this is technically not maximum likelihood estimation, it's really just an ad-hoc solution to overfitting.



    (4) Bayesian methods, probably the most common alternative to Maximum Likelihood Estimation in the statistics world, are also used for estimating the parameter values of a neural network. However, this is often too computationally intensive for large networks.






    share|cite|improve this answer











    $endgroup$

















      0












      $begingroup$

      These are fairly orthogonal topics.



      Neural networks are a type of model which has a very large number of parameters. Maximum Likelihood Estimation is a very common method for estimating parameters from a given model and data. Typically, a model will allow you to compute a likelihood function from a model, data and parameter values. Since we don't know what the actual parameter values are, one way of estimating them is to use the value that maximizes the given likelihood. Neural networks are our model, maximum likelihood estimation is one method for estimating the parameters of our model.



      One slightly technical note is that often, Maximum Likelihood Estimation is not exactly used in Neural Networks. That is, there are a lot of regularization methods used that imply we're not actually maximizing a likelihood function. These include:



      (1) Penalized maximum likelihood. This one is a bit of a cop-out, as it doesn't actually take too much effort to think of Penalized likelihoods as actually just a different likelihood (i.e., one with priors) that one is maximizing.



      (2) Random drop out. In especially a lot of the newer architectures, parameter values will randomly be set to 0 during training. This procedure is more definitely outside the realm of maximum likelihood estimation.



      (3) Early stopping. It's not the most popular method at all, but one way to prevent overfitting is just to stop the optimization algorithm before it converges. Again, this is technically not maximum likelihood estimation, it's really just an ad-hoc solution to overfitting.



      (4) Bayesian methods, probably the most common alternative to Maximum Likelihood Estimation in the statistics world, are also used for estimating the parameter values of a neural network. However, this is often too computationally intensive for large networks.






      share|cite|improve this answer











      $endgroup$















        0












        0








        0





        $begingroup$

        These are fairly orthogonal topics.



        Neural networks are a type of model which has a very large number of parameters. Maximum Likelihood Estimation is a very common method for estimating parameters from a given model and data. Typically, a model will allow you to compute a likelihood function from a model, data and parameter values. Since we don't know what the actual parameter values are, one way of estimating them is to use the value that maximizes the given likelihood. Neural networks are our model, maximum likelihood estimation is one method for estimating the parameters of our model.



        One slightly technical note is that often, Maximum Likelihood Estimation is not exactly used in Neural Networks. That is, there are a lot of regularization methods used that imply we're not actually maximizing a likelihood function. These include:



        (1) Penalized maximum likelihood. This one is a bit of a cop-out, as it doesn't actually take too much effort to think of Penalized likelihoods as actually just a different likelihood (i.e., one with priors) that one is maximizing.



        (2) Random drop out. In especially a lot of the newer architectures, parameter values will randomly be set to 0 during training. This procedure is more definitely outside the realm of maximum likelihood estimation.



        (3) Early stopping. It's not the most popular method at all, but one way to prevent overfitting is just to stop the optimization algorithm before it converges. Again, this is technically not maximum likelihood estimation, it's really just an ad-hoc solution to overfitting.



        (4) Bayesian methods, probably the most common alternative to Maximum Likelihood Estimation in the statistics world, are also used for estimating the parameter values of a neural network. However, this is often too computationally intensive for large networks.






        share|cite|improve this answer











        $endgroup$



        These are fairly orthogonal topics.



        Neural networks are a type of model which has a very large number of parameters. Maximum Likelihood Estimation is a very common method for estimating parameters from a given model and data. Typically, a model will allow you to compute a likelihood function from a model, data and parameter values. Since we don't know what the actual parameter values are, one way of estimating them is to use the value that maximizes the given likelihood. Neural networks are our model, maximum likelihood estimation is one method for estimating the parameters of our model.



        One slightly technical note is that often, Maximum Likelihood Estimation is not exactly used in Neural Networks. That is, there are a lot of regularization methods used that imply we're not actually maximizing a likelihood function. These include:



        (1) Penalized maximum likelihood. This one is a bit of a cop-out, as it doesn't actually take too much effort to think of Penalized likelihoods as actually just a different likelihood (i.e., one with priors) that one is maximizing.



        (2) Random drop out. In especially a lot of the newer architectures, parameter values will randomly be set to 0 during training. This procedure is more definitely outside the realm of maximum likelihood estimation.



        (3) Early stopping. It's not the most popular method at all, but one way to prevent overfitting is just to stop the optimization algorithm before it converges. Again, this is technically not maximum likelihood estimation, it's really just an ad-hoc solution to overfitting.



        (4) Bayesian methods, probably the most common alternative to Maximum Likelihood Estimation in the statistics world, are also used for estimating the parameter values of a neural network. However, this is often too computationally intensive for large networks.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited 1 hour ago

























        answered 1 hour ago









        Cliff ABCliff AB

        13.8k12567




        13.8k12567




















            aca06 is a new contributor. Be nice, and check out our Code of Conduct.









            draft saved

            draft discarded


















            aca06 is a new contributor. Be nice, and check out our Code of Conduct.












            aca06 is a new contributor. Be nice, and check out our Code of Conduct.











            aca06 is a new contributor. Be nice, and check out our Code of Conduct.














            Thanks for contributing an answer to Cross Validated!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f402511%2fis-it-correct-to-say-the-neural-networks-are-an-alternative-way-of-performing-ma%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Reverse int within the 32-bit signed integer range: [−2^31, 2^31 − 1]Combining two 32-bit integers into one 64-bit integerDetermine if an int is within rangeLossy packing 32 bit integer to 16 bitComputing the square root of a 64-bit integerKeeping integer addition within boundsSafe multiplication of two 64-bit signed integersLeetcode 10: Regular Expression MatchingSigned integer-to-ascii x86_64 assembler macroReverse the digits of an Integer“Add two numbers given in reverse order from a linked list”

            Category:Fedor von Bock Media in category "Fedor von Bock"Navigation menuUpload mediaISNI: 0000 0000 5511 3417VIAF ID: 24712551GND ID: 119294796Library of Congress authority ID: n96068363BnF ID: 12534305fSUDOC authorities ID: 034604189Open Library ID: OL338253ANKCR AUT ID: jn19990000869National Library of Israel ID: 000514068National Thesaurus for Author Names ID: 341574317ReasonatorScholiaStatistics

            Kiel Indholdsfortegnelse Historie | Transport og færgeforbindelser | Sejlsport og anden sport | Kultur | Kendte personer fra Kiel | Noter | Litteratur | Eksterne henvisninger | Navigationsmenuwww.kiel.de54°19′31″N 10°8′26″Ø / 54.32528°N 10.14056°Ø / 54.32528; 10.14056Oberbürgermeister Dr. Ulf Kämpferwww.statistik-nord.deDen danske Stats StatistikKiels hjemmesiderrrWorldCat312794080n790547494030481-4