Skip to main content

Hawking-Strahlung Inhaltsverzeichnis Anschauliche Interpretation | Hawking-Temperatur | Abschätzungen | Erläuterungen zu Hawkings Originalarbeit | Schlussfolgerungen und Ausblick | Literatur | Weblinks | Einzelnachweise | Navigationsmenü0710.43451976PhRvD..13..198P10.1103/PhysRevD.13.198hep-th/0106111Parentani, Spindel: Hawking Radiation, ScholarpediaAndreas Müller: Hawking-Strahlung, Lexikon der Astronomie, SpektrumR. Brout, S. Massar, R. Parentani, Ph. Spindel: A Primer for Black Hole Quantum Physics, Arxiv.orgStephen W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975), 199–220Hawking, Black hole explosions?J.B. Hartle, S.W. Hawking, "Path-integral derivation of black-hole radiance", Phys. Rev. D 13, (1976), S. 2188R.M. Wald, "On particle creation by black holes", Comm. Math. Phys. 1975, Volume 45, Issue 1, S. 9–34Artikel auf www.scholarpedia.org1207.3123Arxiv 2012Ping Dao, Daniel Jafferis, Aron Wall, Traversable Wormholes via a Double Trace DeformationNatalie Wolchover: Newfound Wormhole Allows Information to Escape Black HolesArxiv 2017

StrahlungQuantenfeldtheorieAllgemeine RelativitätstheorieStephen Hawking


Stephen HawkingpostulierteSchwarzer LöcherQuantenfeldtheorieAllgemeinen RelativitätstheorieQuantengravitationJ. D. BekensteinEreignishorizontesEntropieBekenstein-Hawking-EntropieGibbons-Hawking-EffektUnruh-Effektklassischen PhysikQuantenelektrodynamikQuantenfeldtheorienVakuumVakuumfluktuationenvirtuellenTeilchenAntiteilchenPhotonenSchwarzkörperstrahlungSchwarzschildradiusSupernovaePhotonenElektronenPositronenTNT-ÄquivalentSemiklassischer NäherungSchwarzschild-Metriksehr kleine Schwarze LöcherWiensche VerschiebungsgesetzSchwarzschildradiusStefan-Boltzmann-GesetzMKS-EinheitenFermionen semiklassischen NäherungQuantenfeldtheorieEreignishorizontesSchwarzschild-MetrikBirkhoff-TheoremQuantisierungFourierentwicklungKlein-Gordon-GleichungErzeugungs- und VernichtungsoperatorenFock-ZustandBogoljubov-TransformationQuantentheorie der Gravitationkosmische HintergrundstrahlungQuantenobjekte Forderungen aus der QuantenmechanikJoseph PolchinskiÄquivalenzprinzipJuan MaldacenaLeonard SusskindEinstein-Rosen-Brücken












Hawking-Strahlung




aus Wikipedia, der freien Enzyklopädie






Zur Navigation springen
Zur Suche springen





Stephen Hawking



Die Hawking-Strahlung ist eine von dem britischen Physiker Stephen Hawking 1975 postulierte Strahlung Schwarzer Löcher. Sie wird aus Konzepten der Quantenfeldtheorie und der Allgemeinen Relativitätstheorie abgeleitet.[1] Eine Möglichkeit, die Existenz der Strahlung zu beweisen oder zu widerlegen, ist nach dem derzeitigen Stand der Technik nicht in Sicht.


Die Hawking-Strahlung ist auch für die aktuelle Forschung von Interesse, weil sie als potenzielles Testfeld für eine Theorie der Quantengravitation dienen könnte.


Heuristische Überlegungen führten J. D. Bekenstein bereits 1973 zu der Hypothese, dass die Oberfläche des Ereignishorizontes ein Maß für die Entropie eines Schwarzen Loches sein könnte (Bekenstein-Hawking-Entropie). Dann müsste nach der Thermodynamik einem Schwarzen Loch aber auch eine endliche Temperatur zugeordnet werden können und es müsste im thermischen Gleichgewicht mit seiner Umgebung stehen. Das ergab ein Paradoxon, da man damals eigentlich davon ausging, dass keine Strahlung aus Schwarzen Löchern entkommen könne. Hawking stellte quantenmechanische Berechnungen an und fand zu seiner eigenen Überraschung, dass doch eine thermische Strahlung zu erwarten sei.


Ähnliche Phänomene wie in der Hawking-Strahlung treten in der Kosmologie auf (Gibbons-Hawking-Effekt) und bei beschleunigten Bezugssystemen (Unruh-Effekt).




Inhaltsverzeichnis





  • 1 Anschauliche Interpretation


  • 2 Hawking-Temperatur


  • 3 Abschätzungen


  • 4 Erläuterungen zu Hawkings Originalarbeit

    • 4.1 Vorbemerkungen


    • 4.2 Erläuterungen


    • 4.3 Details



  • 5 Schlussfolgerungen und Ausblick


  • 6 Literatur


  • 7 Weblinks


  • 8 Einzelnachweise




Anschauliche Interpretation |


Hawking hat in seiner Veröffentlichung im Jahre 1975[1] und auch in mehreren populärwissenschaftlichen Büchern intuitive Erläuterungen geboten, die gemäß eigener Aussage allerdings nicht allzu wörtlich zu nehmen sind:[2][3]


Im Gegensatz zur klassischen Physik ist in der Quantenelektrodynamik (und anderen Quantenfeldtheorien) das Vakuum kein „leeres Nichts“, sondern erlaubt vielmehr Vakuumfluktuationen. Vakuumfluktuationen bestehen aus virtuellen Teilchen-Antiteilchen-Paaren. Solche Paare können sowohl massebehaftete als auch masselose Teilchen wie etwa Photonen sein. Derartige Vakuumfluktuationen existieren auch in der unmittelbaren Nähe des Ereignishorizontes Schwarzer Löcher. Fällt ein Teilchen (oder Antiteilchen) in das Schwarze Loch, so werden die beiden Partner durch den Ereignishorizont getrennt. Der in das Schwarze Loch fallende Partner trägt negative Energie, während der zweite Partner, der als reales Teilchen (oder Antiteilchen) in den freien Raum entkommt, positive Energie trägt. „Nach der Einsteinschen Gleichung E=mc² ist die Energie proportional zur Masse. Fließt negative Energie in das Schwarze Loch, verringert sich infolgedessen seine Masse“.


An anderer Stelle[4] benutzt Hawking eine andere Interpretation von Teilchen-Antiteilchen-Paaren, um die Hawking-Strahlung zu veranschaulichen: Da ein Teilchen oder Antiteilchen negativer Energie auch als Antiteilchen oder Teilchen positiver Energie aufgefasst werden kann, das rückwärts in der Zeit läuft, könnte man ein in das Schwarze Loch fallendes Teilchen/Antiteilchen so interpretieren, dass es aus dem Schwarzen Loch kommt und am Ereignishorizont durch das Gravitationsfeld in die Zeit-Vorwärtsrichtung gestreut wird.


Diejenigen Teilchen oder Antiteilchen, die dem Schwarzen Loch entkommen, bilden die Hawking-Strahlung. Sie ist thermischer Natur in der Art von Schwarzkörperstrahlung und mit einer bestimmten Temperatur verbunden, der sogenannten Hawking-Temperatur, die sich umgekehrt proportional zur Masse des Schwarzen Lochs verhält.


Da die Vakuumfluktuationen durch eine starke Krümmung der Raumzeit begünstigt werden, ist dieser Effekt besonders bei Schwarzen Löchern geringer Masse bedeutsam. Schwarze Löcher geringer Masse sind von geringer Ausdehnung, d. h., haben einen kleineren Schwarzschildradius. Die den Ereignishorizont umgebende Raumzeit ist entsprechend stärker gekrümmt. Je größer und damit massereicher ein Schwarzes Loch ist, desto weniger strahlt es also. Je kleiner ein Schwarzes Loch ist, umso höher ist seine Temperatur und aufgrund stärkerer Hawking-Strahlung verdampft es umso schneller.


Große Schwarze Löcher, wie sie aus Supernovae entstehen, haben eine so geringe Strahlung (überwiegend Photonen), dass diese im Universum nicht nachweisbar ist. Kleine Schwarze Löcher haben dagegen nach dieser Theorie eine deutliche Wärmestrahlung, was dazu führt, dass ihre Masse rasch abnimmt. So hat ein Schwarzes Loch der Masse 1012 Kilogramm – der Masse eines Berges – eine Temperatur von etwa 1011 Kelvin, so dass neben Photonen auch massebehaftete Teilchen wie Elektronen und Positronen emittiert werden. Dadurch steigt die Strahlung weiter an, sodass ein so kleines Schwarzes Loch in relativ kurzer Zeit völlig zerstrahlt (verdampft). Sinkt die Masse unter 1000 Tonnen, so explodiert das Schwarze Loch mit der Energie mehrerer Millionen Mega- bzw. Teratonnen TNT-Äquivalent.[5] Die Lebensdauer eines Schwarzen Loches ist proportional zur dritten Potenz seiner ursprünglichen Masse und beträgt bei einem Schwarzen Loch mit der Masse unserer Sonne ungefähr 1064 Jahre. Sie liegt damit jenseits sämtlicher Beobachtungsgrenzen.



Hawking-Temperatur |


Hawking fand eine Formel für die Entropie Sdisplaystyle S und Strahlungstemperatur Tdisplaystyle T eines Schwarzen Lochs, die auch als Hawking-Temperatur THdisplaystyle T_mathrm H bezeichnet wird und gegeben ist durch:


TH=ℏ c38πGMkBdisplaystyle T_mathrm H =frac hbar c^38pi ,G,Mk_mathrm B

Dabei bedeutet



  • ℏdisplaystyle hbar das reduzierte plancksche Wirkungsquantum,


  • cdisplaystyle c die Lichtgeschwindigkeit,


  • Gdisplaystyle G die Gravitationskonstante,


  • Mdisplaystyle M die Masse des Schwarzen Lochs und


  • kBdisplaystyle k_mathrm B die Boltzmannkonstante.

Häufig wird die Temperatur und Entropie in der Gravitationsphysik auch so angegeben, dass die Boltzmannkonstante weggelassen wird.


Die Ableitung der Formel für die Temperatur erfolgte in der ursprünglichen Arbeit von Hawking in Semiklassischer Näherung. Da ein Teil der erzeugten Strahlung durch das Gravitationsfeld in das Schwarze Loch zurückgestreut wird, sind Schwarze Löcher eher als „graue Strahler“ zu verstehen mit einer gegenüber dem Modell des schwarzen Körpers verminderten Strahlungsintensität. Die Näherungen bei der Herleitung gelten nur für Schwarze Löcher mit großer Masse, da angenommen wurde, dass die Krümmung des Ereignishorizontes vernachlässigbar klein ist, so dass „gewöhnliche“ Quantenmechanik in der Hintergrund-Raumzeit (im Fall des Schwarzen Lochs die Schwarzschild-Metrik oder deren Verallgemeinerungen) betrieben werden kann. Für sehr kleine Schwarze Löcher sollte die Intensitätsverteilung deutlich von der eines schwarzen Strahlers abweichen, weil in diesem Fall die quantenmechanischen Effekte so bestimmend werden, dass die semiklassische Näherung nicht mehr gilt.


Aus der von Hawking gefundenen Formel für die Temperatur ergab sich über dE=TdSdisplaystyle dE=TdS (mit E=Mc2displaystyle E=Mc^2) eine Formel für die Entropie, die bis auf Vorfaktoren mit der von Bekenstein mit heuristischen Argumenten abgeleiteten Formel übereinstimmte.



Abschätzungen |


Von der Größenordnung her lässt sich die Hawking-Temperatur folgendermaßen herleiten:[6] Das Wiensche Verschiebungsgesetz ergibt ein Maximum der Schwarzkörperstrahlung bei Wellenlängen λ≈ℏckBTdisplaystyle lambda approx frac hbar ck_mathrm B T. Bei Schwarzen Löchern kommt als Längeneinheit nur der Schwarzschildradius rS=2GMc2displaystyle r_mathrm S =frac 2GMc^2 in Betracht, so dass λ≈rS≈GMc2displaystyle lambda approx r_mathrm S approx frac GMc^2 und sich die Temperatur (in Kelvin) ergibt:


T≈ℏc3kBGM≈10−6M⊙Mdisplaystyle Tapprox frac hbar c^3k_mathrm B GMapprox 10^-6frac M_odot M

mit der Sonnenmasse M⊙displaystyle M_odot .


Auf ähnliche Weise lässt sich die Strahlungsleistung nach dem Stefan-Boltzmann-Gesetz abschätzen:


P≈c(kBT)4(ℏc)3A≈cℏcrS4rS2≈ℏc6G2M2displaystyle Papprox cfrac (k_mathrm B T)^4(hbar c)^3Aapprox cfrac hbar cr_S^4r_S^2approx frac hbar c^6G^2M^2


mit der Fläche A≈4πrS2displaystyle Aapprox 4pi r_S^2, dem Schwarzschildradius rS≈GMc2displaystyle r_Sapprox frac GMc^2 und der oben abgeschätzten Temperatur kBT≈ℏcrSdisplaystyle k_mathrm B Tapprox frac hbar cr_S. In MKS-Einheiten ergibt sich: P≈1038M−2displaystyle Papprox 10^38M^-2 Watt


Die Lebensdauer τdisplaystyle tau ergibt sich der Größenordnung nach aus Pτ≈Mc2displaystyle Ptau approx Mc^2 zu:


τ≈G2M3ℏc4displaystyle tau approx frac G^2M^3hbar c^4

Oder bei Angabe mit MKS-Einheiten:



τ≈10−20M3displaystyle tau approx 10^-20M^3 Sekunden

oder τ≈1064⋅(MM⊙)3displaystyle tau approx 10^64cdot left(frac MM_odot right)^3 Jahre



Erläuterungen zu Hawkings Originalarbeit |



Vorbemerkungen |


Seit Hawkings Veröffentlichung 1975[1] wurde eine Reihe unterschiedlicher Methoden zur Herleitung der thermischen Strahlung Schwarzer Löcher entwickelt, die auf verschiedenen Wegen seine ursprünglichen Ergebnisse bestätigen und ergänzen.[7][8]


Hawking verwendete aus Gründen der Einfachheit in seiner Originalarbeit ein masseloses Skalarfeld. Die Ergebnisse können jedoch auf andere Teilchen wie beispielsweise Photonen und allgemeiner auch auf masselose Fermionen erweitert werden. Die Hawking-Strahlung enthält prinzipiell auch massebehaftete Teilchen, allerdings ist deren Beitrag im Vergleich zu masselosen Teilchen um viele Größenordnungen unterdrückt.


Entgegen den oben dargestellten, bildhaften Veranschaulichungen verwendete S. Hawking in den ersten zwei Arbeiten aus dem Jahr 1974 und 1975 keine quantenmechanische Störungstheorie, wie der Begriff der „virtuellen Teilchen“ suggerieren könnte. Wäre dies der Fall, so müsste das Endergebnis von der Kopplungskonstante der betrachteten Wechselwirkung, wie z. B. der Feinstrukturkonstante bei der elektromagnetischen Wechselwirkung, abhängen. Das Ergebnis ist jedoch bereits für freie, nicht-wechselwirkende Felder gültig.


Die Originalarbeit beruht jedoch auf einer Rechnung, deren wesentliche Terme hauptsächlich in der Nähe des Ereignishorizontes einen Beitrag zur Hawking-Strahlung liefern.[9] Die Wellenfunktion des bereits erwähnten masselosen Skalarfeldes kann zudem in zwei Anteile zerlegt werden, wobei der erste Teil in den Außenraum und der zweite Anteil in den Innenraum des Schwarzen Loches gestreut wird. Der zweite Teil ist in der fernen Zukunft kausal also vom Außenraum des Schwarzen Loches getrennt.[8]



Erläuterungen |


Hawking arbeitet in einer semiklassischen Näherung, d. h., er betrachtet eine freie Quantenfeldtheorie auf einer klassischen, schwach gekrümmten Raumzeit. Relevant ist im Wesentlichen die globale Struktur der Raumzeit sowie insbesondere die Existenz eines Ereignishorizontes.


Hawking setzt einen sphärisch-symmetrischen Kollaps einer Masse M voraus, d. h., er geht nicht von einer rein statischen Schwarzschild-Metrik aus. Letztere gilt jedoch aufgrund des Birkhoff-Theorem im Außenraum des Kollaps exakt. Die Details der Innenraumlösung sind für die Argumentation irrelevant.


Hawking beginnt mit der kanonischen Quantisierung freier Felder auf Basis einer verallgemeinerten Fourierentwicklung. Diese Fouriermoden sind dabei speziell Lösungen der Klein-Gordon-Gleichung für masselose Skalarfelder auf der Raumzeit-Geometrie. Die dabei notwendige Zerlegung der Fouriermoden nach positiven und negativen Frequenzen sowie die daraus folgende Klassifizierung von Teilchen und Antiteilchen ist aufgrund der Raumzeitgeometrie nicht eindeutig. Im Zuge der Quantisierung kann ein Beobachter mathematisch jeweils für ihn gültige Erzeugungs- und Vernichtungsoperatoren, sowie einen für ihn gültigen Vakuumzustand (Fock-Zustand) definieren, in dem entsprechend seiner Klassifizierung keine Teilchen und Antiteilchen existieren. Während diese Beobachterabhängigkeit in der Minkowski-Raumzeit für die Erzeugungs- und Vernichtungsoperatoren sowie für den Vakuumzustand letztlich irrelevant ist, führt sie bei Anwesenheit eines Ereignishorizontes zu inäquivalenten Vakuumzuständen.


Mathematisch existiert eine Transformation, die sogenannte Bogoljubov-Transformation, die die Erzeugungs- und Vernichtungsoperatoren beider Beobachter ineinander überführt. Hawking fixiert zunächst einen Vakuumzustand sowie die Erzeugungs- und Vernichtungsoperatoren für die ferne Vergangenheit. In diesem Zustand verschwindet der Erwartungswert des Teilchenzahloperators (definiert für die ferne Vergangenheit). Anschließend bestimmt er die Bogoljubov-Transformation für die Erzeugungs- und Vernichtungsoperatoren für die ferne Zukunft. Dazu wird im Wesentlichen die Streuung der Fouriermoden am kollabierenden Schwarzen Loch berechnet. Der für die Hawking-Strahlung relevante Anteil stammt dabei aus der Streuung der Moden innerhalb des kollabierenden Körpers. Damit kann nun der Erwartungswert des Teilchenzahloperators (definiert für die ferne Zukunft) im ursprünglichen Vakuumzustand (definiert für die ferne Vergangenheit) berechnet werden. Es zeigt sich, dass dieser Erwartungswert nicht verschwindet! Der Beobachter in der fernen Zukunft sieht demnach nicht den für ihn gültigen Vakuumzustand, sondern einen Zustand, in dem tatsächlich Teilchen und Antiteilchen (bzgl. seiner Definition) enthalten sind. Die thermische Natur des Spektrums folgt aus der genauen Form der Bogoljubov-Transformation.


Der physikalische Kern von Hawkings Argumentation lautet demnach wie folgt: Der Kollaps sowie die Anwesenheit eines Horizontes führt zu inäquivalenten Vakuumzuständen. Während in einer flachen Raumzeit die Zeitentwicklung das Vakuum invariant lässt, ist dieses in einer Raumzeit mit Schwarzen Loch einem „Streuprozess“ unterworfen ist, der das initiale Vakuum in einen thermischen Zustand überführt.



Details |


Hawking betrachtet die freie Klein-Gordon-Gleichung


−gab∇a∇bϕ=0displaystyle -g^abnabla _anabla _bphi =0

eines masselosen Skalarfeldes.


Er führt nun die beiden Hyperflächen I−displaystyle mathcal I^- und I+displaystyle mathcal I^+ ein, welche den Außenraum des Schwarzen Loches in der fernen, asymptotischen Vergangenheit (-) und der fernen Zukunft (+) darstellen. Auf diesen Hyperflächen gibt es vollständige Funktionensysteme fidisplaystyle f_i und pidisplaystyle p_i, mittels derer der Feldoperator ϕdisplaystyle phi als Fouriersumme von Erzeugern und Vernichtern dargestellt werden kann:


ϕ=∑i[fiai+f¯iai†]displaystyle phi =sum _i[f_ia_i+bar f_ia_i^dagger ]
ϕ=∑i[pibi+p¯ibi†]+…displaystyle phi =sum _i[p_ib_i+bar p_ib_i^dagger ]+ldots

“…” steht dabei für ein weiteres Funktionensystem auf der lichtartigen Hyperfläche des Ereignishorizontes. Das ist zwar prinzipiell notwendig, um ein eindeutig lösbares Anfangswertproblem zu erhalten, aber für die weitere Rechnung nicht weiter wichtig.


Hawking definiert dann den Vakuumzustand


ai|0−⟩=0displaystyle a_i

bezüglich der von I−displaystyle mathcal I^- einlaufenden Teilchen.


Der allgemeine Zusammenhang zwischen den beiden Familien von Erzeugern und Vernichtern besteht nun in der Bogoljubov-Transformation


pi=∑j[αijfj+βijf¯j]displaystyle p_i=sum _jleft[alpha _ijf_j+beta _ijbar f_jright]
bi=∑j[α¯ijaj−β¯ijaj†]displaystyle b_i=sum _jleft[bar alpha _ija_j-bar beta _ija_j^dagger right]

Hawking zeigt im Folgenden, dass die Streuung der aus I−displaystyle mathcal I^- einlaufenden Moden am Schwarzen Loch dazu führt, dass ein Beobachter auf I+displaystyle mathcal I^+ dem Zustand |0−⟩0_-rangle einen nicht-verschwindenden Teilcheninhalt


⟨0−|bi†bi|0−⟩=∑ij|βij|2>0beta _ij

zuschreibt. Die Erzeugungsrate der Teilchen folgt dabei direkt aus den Koeffizienten βijdisplaystyle beta _ij der Bogoljubov-Transformation. Diese mischen den Vernichtern auf I−displaystyle mathcal I^- einen Anteil von Erzeugern auf I+displaystyle mathcal I^+ bei.


Die Streuung der Moden erfolgt dabei sowohl an der äußeren Schwarzschildgeometrie als auch an der Geometrie des Innenraums des kollabierenden Sterns. Letztere ergibt einen nicht-trivialen Beitrag zu den pidisplaystyle p_i-Moden, die dann die spezielle Form der Bogoljubov-Koeffizienten bewirken.


Der Beitrag einer Mode mit Radialfrequenz ωdisplaystyle omega ist dabei


pi∼1e2πω/κ−1displaystyle p_isim frac 1e^2pi omega /kappa -1

mit κ=1/4Mdisplaystyle kappa =1/4M. D. h., es liegt thermische Strahlung mit Temperatur TH=1/8πMdisplaystyle T_H=1/8pi M (in natürlichen Einheiten) entsprechend der Bose-Einstein-Statistik vor.


Hawking erläutert grob, dass für Fermionen ein Verlauf


pi∼1e2πω/κ+1displaystyle p_isim frac 1e^2pi omega /kappa +1

entsprechend der Fermi-Dirac-Statistik zu erwarten ist.


Der Beitrag massebehafteter Teilchen ist exponentiell unterdrückt, da in diesem Fall in der Frequenz bzw. der die Masse entsprechend ω2∼E2=m2+p2displaystyle omega ^2sim E^2=m^2+p^2 zu berücksichtigen ist.



Schlussfolgerungen und Ausblick |


Die Vorhersage der Hawking-Strahlung beruht auf der Kombination von Effekten der Quantenmechanik und der allgemeinen Relativitätstheorie sowie der Thermodynamik. Da eine Vereinheitlichung dieser Theorien bisher nicht gelungen ist (Quantentheorie der Gravitation) sind solche Vorhersagen immer mit einer gewissen Unsicherheit behaftet.


Mit der thermischen Strahlung verliert das Schwarze Loch Energie und damit Masse. Es „schrumpft“ also mit der Zeit. Schwarze Löcher stellaren Ursprungs haben jedoch aufgrund ihrer großen Masse eine geringere Temperatur als die kosmische Hintergrundstrahlung, weshalb diese Schwarzen Löcher thermische Energie aus ihrer Umgebung aufnehmen. In diesem Fall ist also kein Schrumpfen des Schwarzen Loches möglich, denn durch die Aufnahme an Strahlungsenergie nimmt die Masse dabei gemäß der einsteinschen Masse-Energie-Äquivalenzformel zu. Erst wenn die Umgebungstemperatur unter die Temperatur des Schwarzen Loches gefallen ist, verliert das Loch durch Strahlungsemission an Masse.


Was am „Ende seiner Lebenszeit“ mit einem Schwarzen Loch geschieht, ist teilweise unklar. Laut Hawking findet dort ein explosionsartiger Verdampfungsvorgang des Schwarzen Loches statt. Die in der ursprünglichen Herleitung verwendete Näherung einer schwachen Krümmung der Raumzeit ist dabei aber nicht mehr gültig. Insbesondere tritt dabei das so genannte Informationsparadoxon auf. Es besteht in der Frage, was beim „Verdampfen“ des Schwarzen Loches mit den ursprünglichen Informationen über diejenigen Quantenobjekte geschieht, die bei der Entstehung in das Schwarze Loch hineingestürzt sind. Gemäß bestimmter Forderungen aus der Quantenmechanik (Unitarität) ist zu erwarten, dass diese Informationen mit der Zeit erhalten bleiben. Diese Frage kann jedoch im Rahmen von Hawkings Näherung nicht untersucht werden, da die kollabierende Materie rein klassisch und lediglich die resultierende Hawking-Strahlung selbst quantenmechanisch behandelt wird.


Eine Verschärfung des Informationsparadoxons Schwarzer Löcher stammt von Joseph Polchinski und Kollegen (Feuerwand-Paradoxon, englisch: Firewall).[10][11] Ein Inneres schwarzer Löcher gäbe es nach dieser Hypothese nicht, es wäre durch die Feuerwand begrenzt. Auch das Äquivalenzprinzip wäre durch die Feuerwand-Hypothese verletzt, da ein in das Schwarze Loch fallender Beobachter sehr wohl einen Unterschied bei der Durchquerung des Ereignishorizonts bemerken würde, er würde an der Feuerwand verbrennen. Ursache für deren Existenz wäre letztlich ein Satz der Quantenmechanik, wonach es Verschränkung immer nur zwischen zwei Teilchen geben kann. Bei Schwarzen Löchern wäre aber zum einen ein Paar von Teilchen korreliert, von denen ein Partner im Schwarzen Loch verschwindet, zum anderen aber auch eine Verschränkung mit anderen Teilchen in der Hawking-Strahlung gegeben. Nach Polchinski und Kollegen findet ein schrittweiser Transfer von Quantenverschränkung aus der Umgebung des Ereignishorizonts in die Hawking-Strahlung nach außen statt, was schließlich zu einer Singularität in Form einer Feuerwand im Innern des Schwarzen Lochs führt, an der die Temperatur divergiert. Eine Alternative wurde von Juan Maldacena und Leonard Susskind in ihrer EPR-ER-Hypothese aufgestellt (EPR steht für Einstein-Rosen-Podolsky und quantenverschränkte Teilchenpaare, ER für Einstein-Rosen-Brücken, speziellen Wurmlöchern) der Äquivalenz von Quantenverschränkung und Wurmlöchern zwischen den Teilchenpaaren, ausgebaut nach Entdeckung durchquerbarer Wurmlöcher durch Ping Gao, Daniel Louis Jafferis und Aron C. Wall.[12][13] Das Informationsparadoxon wird gelöst,[14] indem die einzelnen quantenverschränkten Teilchen der Hawking-Strahlung über Wurmlöcher mit ihren Partnern verbunden sind (Oktopus-Bild). Die Wurmlöcher wiederum verbinden kausal zwei Schwarze Löcher im Innern, deren Hawking-Strahlung über das Wurmloch quantenverschränkt ist. Das Feuerwand-Paradoxon wird vermieden, da außerhalb der Schwarzen Löcher der Kontakt der Teilchen nach wie vor über die Raumzeit erfolgen muss.



Literatur |



  • Robert Brout, S. Massar, R. Parentani, P. Spindel: A Primer for black hole quantum physics, Physics Reports, Band 260, 1995, S. 329. arxiv:0710.4345

  • Stephen W. Hawking, Particle creation by black holes, Commun. Math. Phys., Band 43, 1975, S. 199–220


  • Don N. Page: Particle emission rates from a black hole: Massless particles from an uncharged, nonrotating hole. In: Physical Review D. 13, Nr. 2, 1976, S. 198–206. bibcode:1976PhRvD..13..198P. doi:10.1103/PhysRevD.13.198. → Erste detaillierte Studie der Vorgänge bei der Verdampfung Schwarzer Löcher


  • Robert M. Wald: General Relativity, University of Chicago Press, Chicago, 1984.

  • Matt Visser: Essential and inessential features of Hawking radiation. In: Cornell University. Januar 2001. arxiv:hep-th/0106111.


Weblinks |


  • Parentani, Spindel: Hawking Radiation, Scholarpedia

  • Andreas Müller: Hawking-Strahlung, Lexikon der Astronomie, Spektrum

  • R. Brout, S. Massar, R. Parentani, Ph. Spindel: A Primer for Black Hole Quantum Physics, Arxiv.org


Einzelnachweise |



  1. abc Stephen W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975), 199–220 (PDF; 2,8 MB)


  2. Stephen Hawking: Eine kurze Geschichte der Zeit, S. 141 f., Rowohlt Taschenbuch Verlag, 2005, 25. Auflage, ISBN 3-499-60555-4


  3. Stephen Hawking: Das Universum in der Nußschale, S. 153, Hoffmann und Campe, 2001, ISBN 3-455-09345-0


  4. Stephen Hawking, The Quantum Mechanics of Black Holes, Scientific American, Januar 1977


  5. Hawking, Black hole explosions?, Letters to Nature, Band 248, 1. März 1974, S. 30–31


  6. Roman Sexl, Hannelore Sexl: Weiße Zwerge – Schwarze Löcher, Vieweg 1979, S. 83


  7. J.B. Hartle, S.W. Hawking, "Path-integral derivation of black-hole radiance", Phys. Rev. D 13, (1976), S. 2188


  8. ab R.M. Wald, "On particle creation by black holes", Comm. Math. Phys. 1975, Volume 45, Issue 1, S. 9–34


  9. Artikel auf www.scholarpedia.org


  10. Ahmed Almheiri, Donald Marolf, Joseph Polchinski, James Sully: Black Holes: Complementarity or Firewalls? J. High Energy Phys. 2, 062 (2013), arxiv:1207.3123.


  11. Die Feuerwand-Hypothese wurde unterstützt von Leonard Susskind, The Transfer of Entanglement: The Case for Firewalls, Arxiv 2012


  12. Ping Dao, Daniel Jafferis, Aron Wall, Traversable Wormholes via a Double Trace Deformation, Arxiv 2016


  13. Natalie Wolchover: Newfound Wormhole Allows Information to Escape Black Holes, Quanta Magazine, 23. Oktober 2017


  14. Juan Maldacena, Douglas Stanford, Zhenbin Yang Diving into transversable wormholes, Arxiv 2017




Abgerufen von „https://de.wikipedia.org/w/index.php?title=Hawking-Strahlung&oldid=186782011“










Navigationsmenü


























(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgPageParseReport":"limitreport":"cputime":"0.288","walltime":"1.189","ppvisitednodes":"value":1348,"limit":1000000,"ppgeneratednodes":"value":0,"limit":1500000,"postexpandincludesize":"value":4324,"limit":2097152,"templateargumentsize":"value":710,"limit":2097152,"expansiondepth":"value":13,"limit":40,"expensivefunctioncount":"value":0,"limit":500,"unstrip-depth":"value":0,"limit":20,"unstrip-size":"value":8302,"limit":5000000,"entityaccesscount":"value":0,"limit":400,"timingprofile":["100.00% 202.527 1 -total"," 63.20% 127.995 2 Vorlage:Cite_journal"," 20.42% 41.364 4 Vorlage:FormatDate"," 13.61% 27.558 1 Vorlage:Arxiv"," 9.85% 19.951 4 Vorlage:Str_left"," 9.08% 18.382 1 Vorlage:DOI"," 6.06% 12.278 4 Vorlage:Datum"," 5.57% 11.282 1 Vorlage:Bibcode"," 2.66% 5.393 8 Vorlage:Str_trim"," 1.95% 3.949 2 Vorlage:Boolandnot"],"scribunto":"limitreport-timeusage":"value":"0.045","limit":"10.000","limitreport-memusage":"value":1722294,"limit":52428800,"cachereport":"origin":"mw1258","timestamp":"20190409085335","ttl":2592000,"transientcontent":false););"@context":"https://schema.org","@type":"Article","name":"Hawking-Strahlung","url":"https://de.wikipedia.org/wiki/Hawking-Strahlung","sameAs":"http://www.wikidata.org/entity/Q497396","mainEntity":"http://www.wikidata.org/entity/Q497396","author":"@type":"Organization","name":"Autoren der Wikimedia-Projekte","publisher":"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":"@type":"ImageObject","url":"https://www.wikimedia.org/static/images/wmf-hor-googpub.png","datePublished":"2004-04-24T21:56:55Z","image":"https://upload.wikimedia.org/wikipedia/commons/e/eb/Stephen_Hawking.StarChild.jpg","headline":"postulierte Strahlung Schwarzer Lu00f6cher"(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgBackendResponseTime":186,"wgHostname":"mw1323"););

Popular posts from this blog

Reverse int within the 32-bit signed integer range: [−2^31, 2^31 − 1]Combining two 32-bit integers into one 64-bit integerDetermine if an int is within rangeLossy packing 32 bit integer to 16 bitComputing the square root of a 64-bit integerKeeping integer addition within boundsSafe multiplication of two 64-bit signed integersLeetcode 10: Regular Expression MatchingSigned integer-to-ascii x86_64 assembler macroReverse the digits of an Integer“Add two numbers given in reverse order from a linked list”

Category:Fedor von Bock Media in category "Fedor von Bock"Navigation menuUpload mediaISNI: 0000 0000 5511 3417VIAF ID: 24712551GND ID: 119294796Library of Congress authority ID: n96068363BnF ID: 12534305fSUDOC authorities ID: 034604189Open Library ID: OL338253ANKCR AUT ID: jn19990000869National Library of Israel ID: 000514068National Thesaurus for Author Names ID: 341574317ReasonatorScholiaStatistics

Kiel Indholdsfortegnelse Historie | Transport og færgeforbindelser | Sejlsport og anden sport | Kultur | Kendte personer fra Kiel | Noter | Litteratur | Eksterne henvisninger | Navigationsmenuwww.kiel.de54°19′31″N 10°8′26″Ø / 54.32528°N 10.14056°Ø / 54.32528; 10.14056Oberbürgermeister Dr. Ulf Kämpferwww.statistik-nord.deDen danske Stats StatistikKiels hjemmesiderrrWorldCat312794080n790547494030481-4