What is special about square numbers here? The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)The final state of 1000 light bulbs switched on/off by 1000 people passing byWord Problem Proof? (just for fun, help)Enigma : of Wizards, Dwarves and HatsCoin Arrangement Puzzlecreating a more complex sudoku (69x6)Determining the favored penny on a chessboardHow many different ways can I add three numbers to get a certain sum?Board game - winning strategyDifference PuzzlesCould someone come up with a formula explaining the following?How many ways to place three distinguishable tokens on the white spaces of a $4$-by-$4$ chess board?
How can I define good in a religion that claims no moral authority?
How to remove this toilet supply line that seems to have no nut?
Wall plug outlet change
Does Parliament hold absolute power in the UK?
Can the DM override racial traits?
Problems with Ubuntu mount /tmp
How does ice melt when immersed in water
Why is superheterodyning better than direct conversion?
Would an alien lifeform be able to achieve space travel if lacking in vision?
Difference between "generating set" and free product?
Sort a list of pairs representing an acyclic, partial automorphism
How to copy the contents of all files with a certain name into a new file?
How to stretch delimiters to envolve matrices inside of a kbordermatrix?
Simulating Exploding Dice
When did F become S in typeography, and why?
Typeface like Times New Roman but with "tied" percent sign
The variadic template constructor of my class cannot modify my class members, why is that so?
Arduino Pro Micro - switch off LEDs
Can a 1st-level character have an ability score above 18?
how can a perfect fourth interval be considered either consonant or dissonant?
What's the point in a preamp?
Is above average number of years spent on PhD considered a red flag in future academia or industry positions?
Is this wall load bearing? Blueprints and photos attached
Can the prologue be the backstory of your main character?
What is special about square numbers here?
The 2019 Stack Overflow Developer Survey Results Are In
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)The final state of 1000 light bulbs switched on/off by 1000 people passing byWord Problem Proof? (just for fun, help)Enigma : of Wizards, Dwarves and HatsCoin Arrangement Puzzlecreating a more complex sudoku (69x6)Determining the favored penny on a chessboardHow many different ways can I add three numbers to get a certain sum?Board game - winning strategyDifference PuzzlesCould someone come up with a formula explaining the following?How many ways to place three distinguishable tokens on the white spaces of a $4$-by-$4$ chess board?
$begingroup$
I'm not not schooled in math. I'm 50 years old and I only have about a grade 8 level. But I do enjoy math and heard a question in the show "Growing Pains of a Teenage Genius" that interested me. So please forgive me. I do not speak "math."
The question has been posted here already, but I don't think the correct answer was given, and since I'm new, I haven't earned the points to be able to comment on that post. So I've started my own post.
The question is, if you have 1000 pennies lined up in a row, all heads up, and you turn over every second penny, then every third penny, then every fourth penny, etc. all the way until you turn over the thousandth and last penny, which ones will be heads up?
I've figured out that the answer is that the square numbers will be heads up. It is only the square numbers that will be flipped an even number of times to land them in the position they started out in. But I don't know why that is.
What is it about square numbers that they are the only ones that get flipped an even number of times through the process of flipping every 2nd, 3rd, 4th,...etc, penny?
I thought it must have something to do with factoring since the primes will only get flipped once, but the widening gap between each succession of flips is a bit complicated to visualize, and I don't know how to work that with factoring square numbers.
Is there something special about factoring square numbers that's applicable here?
How do you visualize this problem mathematically?
puzzle
New contributor
$endgroup$
add a comment |
$begingroup$
I'm not not schooled in math. I'm 50 years old and I only have about a grade 8 level. But I do enjoy math and heard a question in the show "Growing Pains of a Teenage Genius" that interested me. So please forgive me. I do not speak "math."
The question has been posted here already, but I don't think the correct answer was given, and since I'm new, I haven't earned the points to be able to comment on that post. So I've started my own post.
The question is, if you have 1000 pennies lined up in a row, all heads up, and you turn over every second penny, then every third penny, then every fourth penny, etc. all the way until you turn over the thousandth and last penny, which ones will be heads up?
I've figured out that the answer is that the square numbers will be heads up. It is only the square numbers that will be flipped an even number of times to land them in the position they started out in. But I don't know why that is.
What is it about square numbers that they are the only ones that get flipped an even number of times through the process of flipping every 2nd, 3rd, 4th,...etc, penny?
I thought it must have something to do with factoring since the primes will only get flipped once, but the widening gap between each succession of flips is a bit complicated to visualize, and I don't know how to work that with factoring square numbers.
Is there something special about factoring square numbers that's applicable here?
How do you visualize this problem mathematically?
puzzle
New contributor
$endgroup$
1
$begingroup$
You may find this of interest: math.stackexchange.com/questions/11223/…
$endgroup$
– Minus One-Twelfth
2 hours ago
add a comment |
$begingroup$
I'm not not schooled in math. I'm 50 years old and I only have about a grade 8 level. But I do enjoy math and heard a question in the show "Growing Pains of a Teenage Genius" that interested me. So please forgive me. I do not speak "math."
The question has been posted here already, but I don't think the correct answer was given, and since I'm new, I haven't earned the points to be able to comment on that post. So I've started my own post.
The question is, if you have 1000 pennies lined up in a row, all heads up, and you turn over every second penny, then every third penny, then every fourth penny, etc. all the way until you turn over the thousandth and last penny, which ones will be heads up?
I've figured out that the answer is that the square numbers will be heads up. It is only the square numbers that will be flipped an even number of times to land them in the position they started out in. But I don't know why that is.
What is it about square numbers that they are the only ones that get flipped an even number of times through the process of flipping every 2nd, 3rd, 4th,...etc, penny?
I thought it must have something to do with factoring since the primes will only get flipped once, but the widening gap between each succession of flips is a bit complicated to visualize, and I don't know how to work that with factoring square numbers.
Is there something special about factoring square numbers that's applicable here?
How do you visualize this problem mathematically?
puzzle
New contributor
$endgroup$
I'm not not schooled in math. I'm 50 years old and I only have about a grade 8 level. But I do enjoy math and heard a question in the show "Growing Pains of a Teenage Genius" that interested me. So please forgive me. I do not speak "math."
The question has been posted here already, but I don't think the correct answer was given, and since I'm new, I haven't earned the points to be able to comment on that post. So I've started my own post.
The question is, if you have 1000 pennies lined up in a row, all heads up, and you turn over every second penny, then every third penny, then every fourth penny, etc. all the way until you turn over the thousandth and last penny, which ones will be heads up?
I've figured out that the answer is that the square numbers will be heads up. It is only the square numbers that will be flipped an even number of times to land them in the position they started out in. But I don't know why that is.
What is it about square numbers that they are the only ones that get flipped an even number of times through the process of flipping every 2nd, 3rd, 4th,...etc, penny?
I thought it must have something to do with factoring since the primes will only get flipped once, but the widening gap between each succession of flips is a bit complicated to visualize, and I don't know how to work that with factoring square numbers.
Is there something special about factoring square numbers that's applicable here?
How do you visualize this problem mathematically?
puzzle
puzzle
New contributor
New contributor
New contributor
asked 2 hours ago
DeeHDeeH
262
262
New contributor
New contributor
1
$begingroup$
You may find this of interest: math.stackexchange.com/questions/11223/…
$endgroup$
– Minus One-Twelfth
2 hours ago
add a comment |
1
$begingroup$
You may find this of interest: math.stackexchange.com/questions/11223/…
$endgroup$
– Minus One-Twelfth
2 hours ago
1
1
$begingroup$
You may find this of interest: math.stackexchange.com/questions/11223/…
$endgroup$
– Minus One-Twelfth
2 hours ago
$begingroup$
You may find this of interest: math.stackexchange.com/questions/11223/…
$endgroup$
– Minus One-Twelfth
2 hours ago
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Each penny will be flipped a number of times equal to the number of divisors it has (including or not including $1$ based on the specific wording of the problem).
Supposing that $d$ is a divisor of $n$, i.e. that there is some $k$ such that $n = dtimes k$, then $k$ is also a divisor. In the event that $k$ is different than $d$ then it will be counted separately than $d$ when counting the total number of divisors. In this way, every single divisor $d$ of $n$ that we wish to count will have a corresponding different divisor $k=fracnd$.
All except the circumstance where $n$ happens to be a square number $n=r^2$ in which case you have $r$ is a divisor and the corresponding paired divisor $fracnr$ is again equal to $r$ and so is not distinct and need not be counted a second time.
Let's look at $12$ for an example.
$12$ has the divisors $colorred1,colorblue2,colorpurple3,colorpurple4,colorblue6,colorred12$. Note how the numbers with matching colors are paired together and multiply together to give $12$.
Now, let's look at a square number as an example like $16$.
$16$ has the divisors $colorred1,colorblue2,colorpurple4,colorblue8,colorred16$. Notice here again we have the numbers with matching color multiply together to get $16$. However, in the center since $16$ is square you only have one number of that color, not two, again because the corresponding divisor associated with it happens to be the same number. This pattern continues for all numbers. Every square number has an odd number of divisors and every non-square number has an even number of divisors and it is for this reason that the only pennies left turned heads up will be the ones at the square number positions.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
DeeH is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3186800%2fwhat-is-special-about-square-numbers-here%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Each penny will be flipped a number of times equal to the number of divisors it has (including or not including $1$ based on the specific wording of the problem).
Supposing that $d$ is a divisor of $n$, i.e. that there is some $k$ such that $n = dtimes k$, then $k$ is also a divisor. In the event that $k$ is different than $d$ then it will be counted separately than $d$ when counting the total number of divisors. In this way, every single divisor $d$ of $n$ that we wish to count will have a corresponding different divisor $k=fracnd$.
All except the circumstance where $n$ happens to be a square number $n=r^2$ in which case you have $r$ is a divisor and the corresponding paired divisor $fracnr$ is again equal to $r$ and so is not distinct and need not be counted a second time.
Let's look at $12$ for an example.
$12$ has the divisors $colorred1,colorblue2,colorpurple3,colorpurple4,colorblue6,colorred12$. Note how the numbers with matching colors are paired together and multiply together to give $12$.
Now, let's look at a square number as an example like $16$.
$16$ has the divisors $colorred1,colorblue2,colorpurple4,colorblue8,colorred16$. Notice here again we have the numbers with matching color multiply together to get $16$. However, in the center since $16$ is square you only have one number of that color, not two, again because the corresponding divisor associated with it happens to be the same number. This pattern continues for all numbers. Every square number has an odd number of divisors and every non-square number has an even number of divisors and it is for this reason that the only pennies left turned heads up will be the ones at the square number positions.
$endgroup$
add a comment |
$begingroup$
Each penny will be flipped a number of times equal to the number of divisors it has (including or not including $1$ based on the specific wording of the problem).
Supposing that $d$ is a divisor of $n$, i.e. that there is some $k$ such that $n = dtimes k$, then $k$ is also a divisor. In the event that $k$ is different than $d$ then it will be counted separately than $d$ when counting the total number of divisors. In this way, every single divisor $d$ of $n$ that we wish to count will have a corresponding different divisor $k=fracnd$.
All except the circumstance where $n$ happens to be a square number $n=r^2$ in which case you have $r$ is a divisor and the corresponding paired divisor $fracnr$ is again equal to $r$ and so is not distinct and need not be counted a second time.
Let's look at $12$ for an example.
$12$ has the divisors $colorred1,colorblue2,colorpurple3,colorpurple4,colorblue6,colorred12$. Note how the numbers with matching colors are paired together and multiply together to give $12$.
Now, let's look at a square number as an example like $16$.
$16$ has the divisors $colorred1,colorblue2,colorpurple4,colorblue8,colorred16$. Notice here again we have the numbers with matching color multiply together to get $16$. However, in the center since $16$ is square you only have one number of that color, not two, again because the corresponding divisor associated with it happens to be the same number. This pattern continues for all numbers. Every square number has an odd number of divisors and every non-square number has an even number of divisors and it is for this reason that the only pennies left turned heads up will be the ones at the square number positions.
$endgroup$
add a comment |
$begingroup$
Each penny will be flipped a number of times equal to the number of divisors it has (including or not including $1$ based on the specific wording of the problem).
Supposing that $d$ is a divisor of $n$, i.e. that there is some $k$ such that $n = dtimes k$, then $k$ is also a divisor. In the event that $k$ is different than $d$ then it will be counted separately than $d$ when counting the total number of divisors. In this way, every single divisor $d$ of $n$ that we wish to count will have a corresponding different divisor $k=fracnd$.
All except the circumstance where $n$ happens to be a square number $n=r^2$ in which case you have $r$ is a divisor and the corresponding paired divisor $fracnr$ is again equal to $r$ and so is not distinct and need not be counted a second time.
Let's look at $12$ for an example.
$12$ has the divisors $colorred1,colorblue2,colorpurple3,colorpurple4,colorblue6,colorred12$. Note how the numbers with matching colors are paired together and multiply together to give $12$.
Now, let's look at a square number as an example like $16$.
$16$ has the divisors $colorred1,colorblue2,colorpurple4,colorblue8,colorred16$. Notice here again we have the numbers with matching color multiply together to get $16$. However, in the center since $16$ is square you only have one number of that color, not two, again because the corresponding divisor associated with it happens to be the same number. This pattern continues for all numbers. Every square number has an odd number of divisors and every non-square number has an even number of divisors and it is for this reason that the only pennies left turned heads up will be the ones at the square number positions.
$endgroup$
Each penny will be flipped a number of times equal to the number of divisors it has (including or not including $1$ based on the specific wording of the problem).
Supposing that $d$ is a divisor of $n$, i.e. that there is some $k$ such that $n = dtimes k$, then $k$ is also a divisor. In the event that $k$ is different than $d$ then it will be counted separately than $d$ when counting the total number of divisors. In this way, every single divisor $d$ of $n$ that we wish to count will have a corresponding different divisor $k=fracnd$.
All except the circumstance where $n$ happens to be a square number $n=r^2$ in which case you have $r$ is a divisor and the corresponding paired divisor $fracnr$ is again equal to $r$ and so is not distinct and need not be counted a second time.
Let's look at $12$ for an example.
$12$ has the divisors $colorred1,colorblue2,colorpurple3,colorpurple4,colorblue6,colorred12$. Note how the numbers with matching colors are paired together and multiply together to give $12$.
Now, let's look at a square number as an example like $16$.
$16$ has the divisors $colorred1,colorblue2,colorpurple4,colorblue8,colorred16$. Notice here again we have the numbers with matching color multiply together to get $16$. However, in the center since $16$ is square you only have one number of that color, not two, again because the corresponding divisor associated with it happens to be the same number. This pattern continues for all numbers. Every square number has an odd number of divisors and every non-square number has an even number of divisors and it is for this reason that the only pennies left turned heads up will be the ones at the square number positions.
answered 2 hours ago
JMoravitzJMoravitz
49k43990
49k43990
add a comment |
add a comment |
DeeH is a new contributor. Be nice, and check out our Code of Conduct.
DeeH is a new contributor. Be nice, and check out our Code of Conduct.
DeeH is a new contributor. Be nice, and check out our Code of Conduct.
DeeH is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3186800%2fwhat-is-special-about-square-numbers-here%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
You may find this of interest: math.stackexchange.com/questions/11223/…
$endgroup$
– Minus One-Twelfth
2 hours ago