If the empty set is a subset of every set, why write … ∪ ∅? The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Is the void set (∅) a proper subset of every set?Direct proof of empty set being subset of every setIf the empty set is a subset of every set, why isn't $emptyset,a=a$?Why "to every set and to every statement p(x), there exists $xin A ?Should the empty set be included in this example?What subset am I missing from a set containing the empty set and a set with the empty set?Union on the empty set and the set containing the empty setWhy the empty set is a subset of every set?Question about the empty setUnderstanding empty set, set with empty set and set with set of empty set.

Would it be possible to rearrange a dragon's flight muscle to somewhat circumvent the square-cube law?

How do you keep chess fun when your opponent constantly beats you?

If the empty set is a subset of every set, why write ... ∪ ∅?

Didn't get enough time to take a Coding Test - what to do now?

How does this infinite series simplify to an integral?

Python - Fishing Simulator

Create an outline of font

How is simplicity better than precision and clarity in prose?

Take groceries in checked luggage

Wall plug outlet change

Can the prologue be the backstory of your main character?

Working through the single responsibility principle (SRP) in Python when calls are expensive

Is above average number of years spent on PhD considered a red flag in future academia or industry positions?

The following signatures were invalid: EXPKEYSIG 1397BC53640DB551

How should I replace vector<uint8_t>::const_iterator in an API?

Scientific Reports - Significant Figures

How to pronounce 1ターン?

Why did all the guest students take carriages to the Yule Ball?

Can a 1st-level character have an ability score above 18?

Why is superheterodyning better than direct conversion?

Road tyres vs "Street" tyres for charity ride on MTB Tandem

What's the point in a preamp?

Am I ethically obligated to go into work on an off day if the reason is sudden?

What is special about square numbers here?



If the empty set is a subset of every set, why write … ∪ ∅?



The 2019 Stack Overflow Developer Survey Results Are In
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Is the void set (∅) a proper subset of every set?Direct proof of empty set being subset of every setIf the empty set is a subset of every set, why isn't $emptyset,a=a$?Why "to every set and to every statement p(x), there exists p(x)$?Should the empty set be included in this example?What subset am I missing from a set containing the empty set and a set with the empty set?Union on the empty set and the set containing the empty setWhy the empty set is a subset of every set?Question about the empty setUnderstanding empty set, set with empty set and set with set of empty set.










7












$begingroup$


I met the notation $ S=(a,b] ; a,bin mathbb R,a<bcupemptyset $



I know $S$ is a family of subsets ,a set of intervals, and from set theory $emptyset$ is a subsets of every set then why in the notation :$ S=(a,b] ; a,bin mathbb R,a<bcupemptyset $ appear $colorredcupemptyset$?










share|cite|improve this question











$endgroup$
















    7












    $begingroup$


    I met the notation $ S=(a,b] ; a,bin mathbb R,a<bcupemptyset $



    I know $S$ is a family of subsets ,a set of intervals, and from set theory $emptyset$ is a subsets of every set then why in the notation :$ S=(a,b] ; a,bin mathbb R,a<bcupemptyset $ appear $colorredcupemptyset$?










    share|cite|improve this question











    $endgroup$














      7












      7








      7





      $begingroup$


      I met the notation $ S=(a,b] ; a,bin mathbb R,a<bcupemptyset $



      I know $S$ is a family of subsets ,a set of intervals, and from set theory $emptyset$ is a subsets of every set then why in the notation :$ S=(a,b] ; a,bin mathbb R,a<bcupemptyset $ appear $colorredcupemptyset$?










      share|cite|improve this question











      $endgroup$




      I met the notation $ S=(a,b] ; a,bin mathbb R,a<bcupemptyset $



      I know $S$ is a family of subsets ,a set of intervals, and from set theory $emptyset$ is a subsets of every set then why in the notation :$ S=(a,b] ; a,bin mathbb R,a<bcupemptyset $ appear $colorredcupemptyset$?







      measure-theory elementary-set-theory






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 32 mins ago









      LarsH

      555624




      555624










      asked 7 hours ago









      Ica SanduIca Sandu

      1379




      1379




















          4 Answers
          4






          active

          oldest

          votes


















          22












          $begingroup$

          It is because the emptyset $emptyset$ is a subset of every set, but not an element of every set.
          It is $emptysetin S$ and you might want that to show, that the elements of $S$ define a topology.



          Or to be more clear it is $1neq1,emptyset$. The set on the left has one element, the set on the right has two elements, with $emptysetin1,emptyset$






          share|cite|improve this answer











          $endgroup$




















            5












            $begingroup$

            Because the empty set $(emptyset)$ is one thing, but what you have there is $emptyset$, which is a different thing: it's a set with a single element (which happens to be the empty set).






            share|cite|improve this answer









            $endgroup$




















              5












              $begingroup$

              The answer is: the given definition uses $cupemptyset $, not $cupemptyset $, so it adds the empty set as an element, not a subset of $S $.






              share|cite|improve this answer











              $endgroup$




















                3












                $begingroup$

                It looks like $S$ is denoting subintervals of the real line that are open on the left and closed on the right with the convention that $emptyset$ is such a subinterval. In which case there is nothing to show, it's just a convention that $emptyset$ is a subinterval. The reason for using $emptyset$ is show you can write out the collection of all such subintervals in a nice form.



                As for the empty set is a subset of every set, well that's a vacuous truth. For all $ainemptyset$ if $X$ is a set it follows that $ain X.$ This is true, because there are no $ainemptyset.$






                share|cite|improve this answer









                $endgroup$













                  Your Answer








                  StackExchange.ready(function()
                  var channelOptions =
                  tags: "".split(" "),
                  id: "69"
                  ;
                  initTagRenderer("".split(" "), "".split(" "), channelOptions);

                  StackExchange.using("externalEditor", function()
                  // Have to fire editor after snippets, if snippets enabled
                  if (StackExchange.settings.snippets.snippetsEnabled)
                  StackExchange.using("snippets", function()
                  createEditor();
                  );

                  else
                  createEditor();

                  );

                  function createEditor()
                  StackExchange.prepareEditor(
                  heartbeatType: 'answer',
                  autoActivateHeartbeat: false,
                  convertImagesToLinks: true,
                  noModals: true,
                  showLowRepImageUploadWarning: true,
                  reputationToPostImages: 10,
                  bindNavPrevention: true,
                  postfix: "",
                  imageUploader:
                  brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                  contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                  allowUrls: true
                  ,
                  noCode: true, onDemand: true,
                  discardSelector: ".discard-answer"
                  ,immediatelyShowMarkdownHelp:true
                  );



                  );













                  draft saved

                  draft discarded


















                  StackExchange.ready(
                  function ()
                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3186480%2fif-the-empty-set-is-a-subset-of-every-set-why-write-%25e2%2588%25aa-%25e2%2588%2585%23new-answer', 'question_page');

                  );

                  Post as a guest















                  Required, but never shown

























                  4 Answers
                  4






                  active

                  oldest

                  votes








                  4 Answers
                  4






                  active

                  oldest

                  votes









                  active

                  oldest

                  votes






                  active

                  oldest

                  votes









                  22












                  $begingroup$

                  It is because the emptyset $emptyset$ is a subset of every set, but not an element of every set.
                  It is $emptysetin S$ and you might want that to show, that the elements of $S$ define a topology.



                  Or to be more clear it is $1neq1,emptyset$. The set on the left has one element, the set on the right has two elements, with $emptysetin1,emptyset$






                  share|cite|improve this answer











                  $endgroup$

















                    22












                    $begingroup$

                    It is because the emptyset $emptyset$ is a subset of every set, but not an element of every set.
                    It is $emptysetin S$ and you might want that to show, that the elements of $S$ define a topology.



                    Or to be more clear it is $1neq1,emptyset$. The set on the left has one element, the set on the right has two elements, with $emptysetin1,emptyset$






                    share|cite|improve this answer











                    $endgroup$















                      22












                      22








                      22





                      $begingroup$

                      It is because the emptyset $emptyset$ is a subset of every set, but not an element of every set.
                      It is $emptysetin S$ and you might want that to show, that the elements of $S$ define a topology.



                      Or to be more clear it is $1neq1,emptyset$. The set on the left has one element, the set on the right has two elements, with $emptysetin1,emptyset$






                      share|cite|improve this answer











                      $endgroup$



                      It is because the emptyset $emptyset$ is a subset of every set, but not an element of every set.
                      It is $emptysetin S$ and you might want that to show, that the elements of $S$ define a topology.



                      Or to be more clear it is $1neq1,emptyset$. The set on the left has one element, the set on the right has two elements, with $emptysetin1,emptyset$







                      share|cite|improve this answer














                      share|cite|improve this answer



                      share|cite|improve this answer








                      edited 5 hours ago

























                      answered 7 hours ago









                      CornmanCornman

                      3,69321231




                      3,69321231





















                          5












                          $begingroup$

                          Because the empty set $(emptyset)$ is one thing, but what you have there is $emptyset$, which is a different thing: it's a set with a single element (which happens to be the empty set).






                          share|cite|improve this answer









                          $endgroup$

















                            5












                            $begingroup$

                            Because the empty set $(emptyset)$ is one thing, but what you have there is $emptyset$, which is a different thing: it's a set with a single element (which happens to be the empty set).






                            share|cite|improve this answer









                            $endgroup$















                              5












                              5








                              5





                              $begingroup$

                              Because the empty set $(emptyset)$ is one thing, but what you have there is $emptyset$, which is a different thing: it's a set with a single element (which happens to be the empty set).






                              share|cite|improve this answer









                              $endgroup$



                              Because the empty set $(emptyset)$ is one thing, but what you have there is $emptyset$, which is a different thing: it's a set with a single element (which happens to be the empty set).







                              share|cite|improve this answer












                              share|cite|improve this answer



                              share|cite|improve this answer










                              answered 7 hours ago









                              José Carlos SantosJosé Carlos Santos

                              174k23134243




                              174k23134243





















                                  5












                                  $begingroup$

                                  The answer is: the given definition uses $cupemptyset $, not $cupemptyset $, so it adds the empty set as an element, not a subset of $S $.






                                  share|cite|improve this answer











                                  $endgroup$

















                                    5












                                    $begingroup$

                                    The answer is: the given definition uses $cupemptyset $, not $cupemptyset $, so it adds the empty set as an element, not a subset of $S $.






                                    share|cite|improve this answer











                                    $endgroup$















                                      5












                                      5








                                      5





                                      $begingroup$

                                      The answer is: the given definition uses $cupemptyset $, not $cupemptyset $, so it adds the empty set as an element, not a subset of $S $.






                                      share|cite|improve this answer











                                      $endgroup$



                                      The answer is: the given definition uses $cupemptyset $, not $cupemptyset $, so it adds the empty set as an element, not a subset of $S $.







                                      share|cite|improve this answer














                                      share|cite|improve this answer



                                      share|cite|improve this answer








                                      edited 5 hours ago

























                                      answered 5 hours ago









                                      CiaPanCiaPan

                                      10.3k11248




                                      10.3k11248





















                                          3












                                          $begingroup$

                                          It looks like $S$ is denoting subintervals of the real line that are open on the left and closed on the right with the convention that $emptyset$ is such a subinterval. In which case there is nothing to show, it's just a convention that $emptyset$ is a subinterval. The reason for using $emptyset$ is show you can write out the collection of all such subintervals in a nice form.



                                          As for the empty set is a subset of every set, well that's a vacuous truth. For all $ainemptyset$ if $X$ is a set it follows that $ain X.$ This is true, because there are no $ainemptyset.$






                                          share|cite|improve this answer









                                          $endgroup$

















                                            3












                                            $begingroup$

                                            It looks like $S$ is denoting subintervals of the real line that are open on the left and closed on the right with the convention that $emptyset$ is such a subinterval. In which case there is nothing to show, it's just a convention that $emptyset$ is a subinterval. The reason for using $emptyset$ is show you can write out the collection of all such subintervals in a nice form.



                                            As for the empty set is a subset of every set, well that's a vacuous truth. For all $ainemptyset$ if $X$ is a set it follows that $ain X.$ This is true, because there are no $ainemptyset.$






                                            share|cite|improve this answer









                                            $endgroup$















                                              3












                                              3








                                              3





                                              $begingroup$

                                              It looks like $S$ is denoting subintervals of the real line that are open on the left and closed on the right with the convention that $emptyset$ is such a subinterval. In which case there is nothing to show, it's just a convention that $emptyset$ is a subinterval. The reason for using $emptyset$ is show you can write out the collection of all such subintervals in a nice form.



                                              As for the empty set is a subset of every set, well that's a vacuous truth. For all $ainemptyset$ if $X$ is a set it follows that $ain X.$ This is true, because there are no $ainemptyset.$






                                              share|cite|improve this answer









                                              $endgroup$



                                              It looks like $S$ is denoting subintervals of the real line that are open on the left and closed on the right with the convention that $emptyset$ is such a subinterval. In which case there is nothing to show, it's just a convention that $emptyset$ is a subinterval. The reason for using $emptyset$ is show you can write out the collection of all such subintervals in a nice form.



                                              As for the empty set is a subset of every set, well that's a vacuous truth. For all $ainemptyset$ if $X$ is a set it follows that $ain X.$ This is true, because there are no $ainemptyset.$







                                              share|cite|improve this answer












                                              share|cite|improve this answer



                                              share|cite|improve this answer










                                              answered 7 hours ago









                                              MelodyMelody

                                              1,21312




                                              1,21312



























                                                  draft saved

                                                  draft discarded
















































                                                  Thanks for contributing an answer to Mathematics Stack Exchange!


                                                  • Please be sure to answer the question. Provide details and share your research!

                                                  But avoid


                                                  • Asking for help, clarification, or responding to other answers.

                                                  • Making statements based on opinion; back them up with references or personal experience.

                                                  Use MathJax to format equations. MathJax reference.


                                                  To learn more, see our tips on writing great answers.




                                                  draft saved


                                                  draft discarded














                                                  StackExchange.ready(
                                                  function ()
                                                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3186480%2fif-the-empty-set-is-a-subset-of-every-set-why-write-%25e2%2588%25aa-%25e2%2588%2585%23new-answer', 'question_page');

                                                  );

                                                  Post as a guest















                                                  Required, but never shown





















































                                                  Required, but never shown














                                                  Required, but never shown












                                                  Required, but never shown







                                                  Required, but never shown

































                                                  Required, but never shown














                                                  Required, but never shown












                                                  Required, but never shown







                                                  Required, but never shown







                                                  Popular posts from this blog

                                                  Reverse int within the 32-bit signed integer range: [−2^31, 2^31 − 1]Combining two 32-bit integers into one 64-bit integerDetermine if an int is within rangeLossy packing 32 bit integer to 16 bitComputing the square root of a 64-bit integerKeeping integer addition within boundsSafe multiplication of two 64-bit signed integersLeetcode 10: Regular Expression MatchingSigned integer-to-ascii x86_64 assembler macroReverse the digits of an Integer“Add two numbers given in reverse order from a linked list”

                                                  Category:Fedor von Bock Media in category "Fedor von Bock"Navigation menuUpload mediaISNI: 0000 0000 5511 3417VIAF ID: 24712551GND ID: 119294796Library of Congress authority ID: n96068363BnF ID: 12534305fSUDOC authorities ID: 034604189Open Library ID: OL338253ANKCR AUT ID: jn19990000869National Library of Israel ID: 000514068National Thesaurus for Author Names ID: 341574317ReasonatorScholiaStatistics

                                                  Kiel Indholdsfortegnelse Historie | Transport og færgeforbindelser | Sejlsport og anden sport | Kultur | Kendte personer fra Kiel | Noter | Litteratur | Eksterne henvisninger | Navigationsmenuwww.kiel.de54°19′31″N 10°8′26″Ø / 54.32528°N 10.14056°Ø / 54.32528; 10.14056Oberbürgermeister Dr. Ulf Kämpferwww.statistik-nord.deDen danske Stats StatistikKiels hjemmesiderrrWorldCat312794080n790547494030481-4