Biological Blimps: PropulsionPlausibility of Giant Floating WhalesA Bird that Never Touches GroundHigh-Altitude Life?How would lower gravity affect motion?Mermaid Buoyancy: Oily Livers, Swim Bladders and LungsPurpose of Engineered Organic Flying WhalesIs there a reason a flying species can't use lighter than air gas to help provide lift?Alternative flightWhat kind of wing design would a quadruped with six wings need to fly well?Would this biological cooling system work?Superheated wing blast!
Why is the Sun approximated as a black body at ~ 5800 K?
Change the color of a single dot in `ddot` symbol
Non-trope happy ending?
Is this part of the description of the Archfey warlock's Misty Escape feature redundant?
Which was the first story featuring espers?
Does the Linux kernel need a file system to run?
It grows, but water kills it
Why do Radio Buttons not fill the entire outer circle?
Multiplicative persistence
What is going on with gets(stdin) on the site coderbyte?
Why does this expression simplify as such?
Does "he squandered his car on drink" sound natural?
Delete multiple columns using awk or sed
Does Doodling or Improvising on the Piano Have Any Benefits?
Stack Interview Code methods made from class Node and Smart Pointers
How much theory knowledge is actually used while playing?
The IT department bottlenecks progress, how should I handle this?
How do you make your own symbol when Detexify fails?
Why do ¬, ∀ and ∃ have the same precedence?
Is it allowed to activate the ability of multiple planeswalkers in a single turn?
Shouldn’t conservatives embrace universal basic income?
I found an audio circuit and I built it just fine, but I find it a bit too quiet. How do I amplify the output so that it is a bit louder?
Has the laser at Magurele, Romania reached a tenth of the Sun's power?
How many arrows is an archer expected to fire by the end of the Tyranny of Dragons pair of adventures?
Biological Blimps: Propulsion
Plausibility of Giant Floating WhalesA Bird that Never Touches GroundHigh-Altitude Life?How would lower gravity affect motion?Mermaid Buoyancy: Oily Livers, Swim Bladders and LungsPurpose of Engineered Organic Flying WhalesIs there a reason a flying species can't use lighter than air gas to help provide lift?Alternative flightWhat kind of wing design would a quadruped with six wings need to fly well?Would this biological cooling system work?Superheated wing blast!
$begingroup$
A while back, I asked this question about the plausibility of giant floating whales and received an excellent and high-scoring answer from Dubukay demonstrating the unfeasibility of the idea. However, more recently I discovered some flawed assumption in the answer and wrote my own answer, demonstrating that, if we assumed a more reasonable gasbag skin thickness than Dubukay had, the idea became much more plausible. In my answer, I calculated that a creature with a mass of 500 kg (not counting the mass of the hydrogen) needed just over 400 kg for its gasbag. This leaves us with 100 kg for everything else.
Now, this flying gasbag will have to do more than just float around to survive. To find food, it will probably have to have some way to move around in the air. Blimps typically use propellers to do this, but propellers are unlikely to be viable for a biological creature for a variety of reasons. Aquatic creatures typically use some kind of flipper to move through the water, but because of the low density of air, the flippers would probably have to be impractically large. So the question is, what would be the best propulsion system for this type of flying creature?
science-based biology creature-design flight
$endgroup$
add a comment |
$begingroup$
A while back, I asked this question about the plausibility of giant floating whales and received an excellent and high-scoring answer from Dubukay demonstrating the unfeasibility of the idea. However, more recently I discovered some flawed assumption in the answer and wrote my own answer, demonstrating that, if we assumed a more reasonable gasbag skin thickness than Dubukay had, the idea became much more plausible. In my answer, I calculated that a creature with a mass of 500 kg (not counting the mass of the hydrogen) needed just over 400 kg for its gasbag. This leaves us with 100 kg for everything else.
Now, this flying gasbag will have to do more than just float around to survive. To find food, it will probably have to have some way to move around in the air. Blimps typically use propellers to do this, but propellers are unlikely to be viable for a biological creature for a variety of reasons. Aquatic creatures typically use some kind of flipper to move through the water, but because of the low density of air, the flippers would probably have to be impractically large. So the question is, what would be the best propulsion system for this type of flying creature?
science-based biology creature-design flight
$endgroup$
$begingroup$
express.co.uk/news/science/686885/…
$endgroup$
– jean
7 hours ago
add a comment |
$begingroup$
A while back, I asked this question about the plausibility of giant floating whales and received an excellent and high-scoring answer from Dubukay demonstrating the unfeasibility of the idea. However, more recently I discovered some flawed assumption in the answer and wrote my own answer, demonstrating that, if we assumed a more reasonable gasbag skin thickness than Dubukay had, the idea became much more plausible. In my answer, I calculated that a creature with a mass of 500 kg (not counting the mass of the hydrogen) needed just over 400 kg for its gasbag. This leaves us with 100 kg for everything else.
Now, this flying gasbag will have to do more than just float around to survive. To find food, it will probably have to have some way to move around in the air. Blimps typically use propellers to do this, but propellers are unlikely to be viable for a biological creature for a variety of reasons. Aquatic creatures typically use some kind of flipper to move through the water, but because of the low density of air, the flippers would probably have to be impractically large. So the question is, what would be the best propulsion system for this type of flying creature?
science-based biology creature-design flight
$endgroup$
A while back, I asked this question about the plausibility of giant floating whales and received an excellent and high-scoring answer from Dubukay demonstrating the unfeasibility of the idea. However, more recently I discovered some flawed assumption in the answer and wrote my own answer, demonstrating that, if we assumed a more reasonable gasbag skin thickness than Dubukay had, the idea became much more plausible. In my answer, I calculated that a creature with a mass of 500 kg (not counting the mass of the hydrogen) needed just over 400 kg for its gasbag. This leaves us with 100 kg for everything else.
Now, this flying gasbag will have to do more than just float around to survive. To find food, it will probably have to have some way to move around in the air. Blimps typically use propellers to do this, but propellers are unlikely to be viable for a biological creature for a variety of reasons. Aquatic creatures typically use some kind of flipper to move through the water, but because of the low density of air, the flippers would probably have to be impractically large. So the question is, what would be the best propulsion system for this type of flying creature?
science-based biology creature-design flight
science-based biology creature-design flight
asked 10 hours ago
GryphonGryphon
4,30823369
4,30823369
$begingroup$
express.co.uk/news/science/686885/…
$endgroup$
– jean
7 hours ago
add a comment |
$begingroup$
express.co.uk/news/science/686885/…
$endgroup$
– jean
7 hours ago
$begingroup$
express.co.uk/news/science/686885/…
$endgroup$
– jean
7 hours ago
$begingroup$
express.co.uk/news/science/686885/…
$endgroup$
– jean
7 hours ago
add a comment |
6 Answers
6
active
oldest
votes
$begingroup$
The same way a nautilus swims around in water: jet propulsion. Nautiluses move using a hyponome, which expands to pull in water from the sides of the nautilus, and contracts to expel a jet of water.
The bio-blimps can majestically wheeze across the land using what is essentially an organic bellows, just like the nautilus. Whenever it wants to move, it expands a bladder to pull in air from broad vents on the side of its body, and then compresses the bladder to expel the air through a much smaller vent to propel itself.
Presumably they already have various valves and sphincters and what not for maintaining their main gasbag, so adding one smaller gasbag for locomotion should a breeze.
$endgroup$
$begingroup$
I had a similar idea, but seeing as air density is very low compared to that of water, you would need huge amounts of air expulsion pressure, so much so that I doubt a biological organism would be able to generate unlike one that lives in water.
$endgroup$
– Kaloyan
10 hours ago
3
$begingroup$
@Kaloyan: Air density being much lower than water means that the air jet produces less thrust, but also the blimp has to overcome less drag. I'd assume any potential thrust/drag ratio is the same for air as it is for water, since in both cases the same fluids are producing the thrust and drag.
$endgroup$
– Giter
9 hours ago
1
$begingroup$
AKA, flatulence... +1.
$endgroup$
– JBH
6 hours ago
$begingroup$
@Giter That makes sense, you make it sound plausible
$endgroup$
– Kaloyan
5 hours ago
add a comment |
$begingroup$
One alternative method of propulsion that could be considered is: Basically having none at all...
Consider a symbiotic system where your 'bio-blimps' are more 'giant floating green houses' - Main creature feeds off light algae/lichen-like secondary lifeforms, which the main creature effectively cultivates as a means to gather energy from the sun by funneling rainwater to them.
Further input could come from birds who nest in/on the bio-blimp, depositing the left overs from meals they collect from elsewhere, which in turns feeds the secondary bio-mass.
Bio-blimp's survival is no longer tied to it being able to navigate toward food, as its food source naturally grows or comes to it, and it is free to drift on the winds while adjusting its lifting bladders to maintain a comfortable altitude.
New contributor
$endgroup$
add a comment |
$begingroup$
Hydrogen Rockets
Consider that your gasbag is full of hydrogen. It would be entirely possible for it to take some of its excess hydrogen and allow it to escape in a direction of its choosing. It could then generate a spark and move because of the explosion (the valve would have to be stronger than the surrounding skin, or course).
I don't think this is a practical solution, but it seems negligent to not mention it.
$endgroup$
add a comment |
$begingroup$
Don't Fly, Fall with Style!
Ok, so it's going to involve flying too, but...
Your creature is going to have some way to control its buoyancy. Presumably muscles that change the shape slightly, thus changing the amount of air displaced, thus changing the buoyancy. So use this ability to your advantage.
The creature grows small wings or flippers. Not nearly enough to lift the creature, but enough to generate some lift. Now the creature can control it's flight by trading height for speed.
Your creature moves by:
- Expanding to increase buoyancy and increase altitude
- Contracting significantly, triggering a "fall"
- Using its "wings" to control the fall
- Expanding again before it hits the ground
Effectively, your creature copies the locomotion of birds of prey, only instead of using thermals to gain height, it uses buoyancy. The lift from the wings will have both horizontal and vertical components, so some of the energy will be converted into making the dive longer, and some of it will go into moving your creature towards its objective.
So your sky whales gracefully float upwards before suddenly diving in whatever direction they want to go.
$endgroup$
$begingroup$
The size and low mass of the creature are likely to make the dives "sudden", or even a "dive" in the conventional sense of the word (it'll probably be more of a very shallow glide), this is still probably a viable mobility method.
$endgroup$
– Gryphon
3 hours ago
add a comment |
$begingroup$
For obvious reasons, wings are by far the best propulsion system as far as animals go.
Since that seems to not be possible due to that whale's anatomy however, and since we've already excluded flippers, I can think of two possible means of locomotion :
Jet propulsion : Such as the one squids use underwater by quickly ejecting water out of a valve, allowing them to reach great speeds. However due to the low density of air, jet propulsion would likely be very weak in terms of acceleration unless unrealistic amounts of pressure are applied. If you are thinking of a slower type of animal though that would be an idea.
No locomotion at all ! Some animals simply travel by drifting, such as jellyfish. Of course in the air that is not really an option, since food would probably be scarce thus depriving you of the luxury to drift aimlessly just waiting for food to land into your mouth.
In conclusion, the best option then would be a combination of both proposals, that is aerial whales that mainly navigate the wind currents by letting themselves drift along the currents, with the ability to (slightly) steer using jet propulsion. That way no enormous amounts of jet pressure would be needed, thus staying in the realm of plausibility.
$endgroup$
add a comment |
$begingroup$
I think an animal like that would have the best chance if it mostly relied on:
- Following winds at different altitudes like a hot air balloon
- Having an omnivorous diet & not chasing any quick moving prey. Their diet could consist of nectar & tree top fruits, along w/ insects & maybe occasionally birds or squirrels
- Instead of chasing prey, relying entirely on passive mechanisms. One possibility would be an organ that charges in the sunlight to glow as an insect lure at night.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "579"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fworldbuilding.stackexchange.com%2fquestions%2f142043%2fbiological-blimps-propulsion%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
6 Answers
6
active
oldest
votes
6 Answers
6
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The same way a nautilus swims around in water: jet propulsion. Nautiluses move using a hyponome, which expands to pull in water from the sides of the nautilus, and contracts to expel a jet of water.
The bio-blimps can majestically wheeze across the land using what is essentially an organic bellows, just like the nautilus. Whenever it wants to move, it expands a bladder to pull in air from broad vents on the side of its body, and then compresses the bladder to expel the air through a much smaller vent to propel itself.
Presumably they already have various valves and sphincters and what not for maintaining their main gasbag, so adding one smaller gasbag for locomotion should a breeze.
$endgroup$
$begingroup$
I had a similar idea, but seeing as air density is very low compared to that of water, you would need huge amounts of air expulsion pressure, so much so that I doubt a biological organism would be able to generate unlike one that lives in water.
$endgroup$
– Kaloyan
10 hours ago
3
$begingroup$
@Kaloyan: Air density being much lower than water means that the air jet produces less thrust, but also the blimp has to overcome less drag. I'd assume any potential thrust/drag ratio is the same for air as it is for water, since in both cases the same fluids are producing the thrust and drag.
$endgroup$
– Giter
9 hours ago
1
$begingroup$
AKA, flatulence... +1.
$endgroup$
– JBH
6 hours ago
$begingroup$
@Giter That makes sense, you make it sound plausible
$endgroup$
– Kaloyan
5 hours ago
add a comment |
$begingroup$
The same way a nautilus swims around in water: jet propulsion. Nautiluses move using a hyponome, which expands to pull in water from the sides of the nautilus, and contracts to expel a jet of water.
The bio-blimps can majestically wheeze across the land using what is essentially an organic bellows, just like the nautilus. Whenever it wants to move, it expands a bladder to pull in air from broad vents on the side of its body, and then compresses the bladder to expel the air through a much smaller vent to propel itself.
Presumably they already have various valves and sphincters and what not for maintaining their main gasbag, so adding one smaller gasbag for locomotion should a breeze.
$endgroup$
$begingroup$
I had a similar idea, but seeing as air density is very low compared to that of water, you would need huge amounts of air expulsion pressure, so much so that I doubt a biological organism would be able to generate unlike one that lives in water.
$endgroup$
– Kaloyan
10 hours ago
3
$begingroup$
@Kaloyan: Air density being much lower than water means that the air jet produces less thrust, but also the blimp has to overcome less drag. I'd assume any potential thrust/drag ratio is the same for air as it is for water, since in both cases the same fluids are producing the thrust and drag.
$endgroup$
– Giter
9 hours ago
1
$begingroup$
AKA, flatulence... +1.
$endgroup$
– JBH
6 hours ago
$begingroup$
@Giter That makes sense, you make it sound plausible
$endgroup$
– Kaloyan
5 hours ago
add a comment |
$begingroup$
The same way a nautilus swims around in water: jet propulsion. Nautiluses move using a hyponome, which expands to pull in water from the sides of the nautilus, and contracts to expel a jet of water.
The bio-blimps can majestically wheeze across the land using what is essentially an organic bellows, just like the nautilus. Whenever it wants to move, it expands a bladder to pull in air from broad vents on the side of its body, and then compresses the bladder to expel the air through a much smaller vent to propel itself.
Presumably they already have various valves and sphincters and what not for maintaining their main gasbag, so adding one smaller gasbag for locomotion should a breeze.
$endgroup$
The same way a nautilus swims around in water: jet propulsion. Nautiluses move using a hyponome, which expands to pull in water from the sides of the nautilus, and contracts to expel a jet of water.
The bio-blimps can majestically wheeze across the land using what is essentially an organic bellows, just like the nautilus. Whenever it wants to move, it expands a bladder to pull in air from broad vents on the side of its body, and then compresses the bladder to expel the air through a much smaller vent to propel itself.
Presumably they already have various valves and sphincters and what not for maintaining their main gasbag, so adding one smaller gasbag for locomotion should a breeze.
edited 7 hours ago
answered 10 hours ago
GiterGiter
14.7k63543
14.7k63543
$begingroup$
I had a similar idea, but seeing as air density is very low compared to that of water, you would need huge amounts of air expulsion pressure, so much so that I doubt a biological organism would be able to generate unlike one that lives in water.
$endgroup$
– Kaloyan
10 hours ago
3
$begingroup$
@Kaloyan: Air density being much lower than water means that the air jet produces less thrust, but also the blimp has to overcome less drag. I'd assume any potential thrust/drag ratio is the same for air as it is for water, since in both cases the same fluids are producing the thrust and drag.
$endgroup$
– Giter
9 hours ago
1
$begingroup$
AKA, flatulence... +1.
$endgroup$
– JBH
6 hours ago
$begingroup$
@Giter That makes sense, you make it sound plausible
$endgroup$
– Kaloyan
5 hours ago
add a comment |
$begingroup$
I had a similar idea, but seeing as air density is very low compared to that of water, you would need huge amounts of air expulsion pressure, so much so that I doubt a biological organism would be able to generate unlike one that lives in water.
$endgroup$
– Kaloyan
10 hours ago
3
$begingroup$
@Kaloyan: Air density being much lower than water means that the air jet produces less thrust, but also the blimp has to overcome less drag. I'd assume any potential thrust/drag ratio is the same for air as it is for water, since in both cases the same fluids are producing the thrust and drag.
$endgroup$
– Giter
9 hours ago
1
$begingroup$
AKA, flatulence... +1.
$endgroup$
– JBH
6 hours ago
$begingroup$
@Giter That makes sense, you make it sound plausible
$endgroup$
– Kaloyan
5 hours ago
$begingroup$
I had a similar idea, but seeing as air density is very low compared to that of water, you would need huge amounts of air expulsion pressure, so much so that I doubt a biological organism would be able to generate unlike one that lives in water.
$endgroup$
– Kaloyan
10 hours ago
$begingroup$
I had a similar idea, but seeing as air density is very low compared to that of water, you would need huge amounts of air expulsion pressure, so much so that I doubt a biological organism would be able to generate unlike one that lives in water.
$endgroup$
– Kaloyan
10 hours ago
3
3
$begingroup$
@Kaloyan: Air density being much lower than water means that the air jet produces less thrust, but also the blimp has to overcome less drag. I'd assume any potential thrust/drag ratio is the same for air as it is for water, since in both cases the same fluids are producing the thrust and drag.
$endgroup$
– Giter
9 hours ago
$begingroup$
@Kaloyan: Air density being much lower than water means that the air jet produces less thrust, but also the blimp has to overcome less drag. I'd assume any potential thrust/drag ratio is the same for air as it is for water, since in both cases the same fluids are producing the thrust and drag.
$endgroup$
– Giter
9 hours ago
1
1
$begingroup$
AKA, flatulence... +1.
$endgroup$
– JBH
6 hours ago
$begingroup$
AKA, flatulence... +1.
$endgroup$
– JBH
6 hours ago
$begingroup$
@Giter That makes sense, you make it sound plausible
$endgroup$
– Kaloyan
5 hours ago
$begingroup$
@Giter That makes sense, you make it sound plausible
$endgroup$
– Kaloyan
5 hours ago
add a comment |
$begingroup$
One alternative method of propulsion that could be considered is: Basically having none at all...
Consider a symbiotic system where your 'bio-blimps' are more 'giant floating green houses' - Main creature feeds off light algae/lichen-like secondary lifeforms, which the main creature effectively cultivates as a means to gather energy from the sun by funneling rainwater to them.
Further input could come from birds who nest in/on the bio-blimp, depositing the left overs from meals they collect from elsewhere, which in turns feeds the secondary bio-mass.
Bio-blimp's survival is no longer tied to it being able to navigate toward food, as its food source naturally grows or comes to it, and it is free to drift on the winds while adjusting its lifting bladders to maintain a comfortable altitude.
New contributor
$endgroup$
add a comment |
$begingroup$
One alternative method of propulsion that could be considered is: Basically having none at all...
Consider a symbiotic system where your 'bio-blimps' are more 'giant floating green houses' - Main creature feeds off light algae/lichen-like secondary lifeforms, which the main creature effectively cultivates as a means to gather energy from the sun by funneling rainwater to them.
Further input could come from birds who nest in/on the bio-blimp, depositing the left overs from meals they collect from elsewhere, which in turns feeds the secondary bio-mass.
Bio-blimp's survival is no longer tied to it being able to navigate toward food, as its food source naturally grows or comes to it, and it is free to drift on the winds while adjusting its lifting bladders to maintain a comfortable altitude.
New contributor
$endgroup$
add a comment |
$begingroup$
One alternative method of propulsion that could be considered is: Basically having none at all...
Consider a symbiotic system where your 'bio-blimps' are more 'giant floating green houses' - Main creature feeds off light algae/lichen-like secondary lifeforms, which the main creature effectively cultivates as a means to gather energy from the sun by funneling rainwater to them.
Further input could come from birds who nest in/on the bio-blimp, depositing the left overs from meals they collect from elsewhere, which in turns feeds the secondary bio-mass.
Bio-blimp's survival is no longer tied to it being able to navigate toward food, as its food source naturally grows or comes to it, and it is free to drift on the winds while adjusting its lifting bladders to maintain a comfortable altitude.
New contributor
$endgroup$
One alternative method of propulsion that could be considered is: Basically having none at all...
Consider a symbiotic system where your 'bio-blimps' are more 'giant floating green houses' - Main creature feeds off light algae/lichen-like secondary lifeforms, which the main creature effectively cultivates as a means to gather energy from the sun by funneling rainwater to them.
Further input could come from birds who nest in/on the bio-blimp, depositing the left overs from meals they collect from elsewhere, which in turns feeds the secondary bio-mass.
Bio-blimp's survival is no longer tied to it being able to navigate toward food, as its food source naturally grows or comes to it, and it is free to drift on the winds while adjusting its lifting bladders to maintain a comfortable altitude.
New contributor
edited 3 hours ago
Gryphon
4,30823369
4,30823369
New contributor
answered 9 hours ago
TheLucklessTheLuckless
1611
1611
New contributor
New contributor
add a comment |
add a comment |
$begingroup$
Hydrogen Rockets
Consider that your gasbag is full of hydrogen. It would be entirely possible for it to take some of its excess hydrogen and allow it to escape in a direction of its choosing. It could then generate a spark and move because of the explosion (the valve would have to be stronger than the surrounding skin, or course).
I don't think this is a practical solution, but it seems negligent to not mention it.
$endgroup$
add a comment |
$begingroup$
Hydrogen Rockets
Consider that your gasbag is full of hydrogen. It would be entirely possible for it to take some of its excess hydrogen and allow it to escape in a direction of its choosing. It could then generate a spark and move because of the explosion (the valve would have to be stronger than the surrounding skin, or course).
I don't think this is a practical solution, but it seems negligent to not mention it.
$endgroup$
add a comment |
$begingroup$
Hydrogen Rockets
Consider that your gasbag is full of hydrogen. It would be entirely possible for it to take some of its excess hydrogen and allow it to escape in a direction of its choosing. It could then generate a spark and move because of the explosion (the valve would have to be stronger than the surrounding skin, or course).
I don't think this is a practical solution, but it seems negligent to not mention it.
$endgroup$
Hydrogen Rockets
Consider that your gasbag is full of hydrogen. It would be entirely possible for it to take some of its excess hydrogen and allow it to escape in a direction of its choosing. It could then generate a spark and move because of the explosion (the valve would have to be stronger than the surrounding skin, or course).
I don't think this is a practical solution, but it seems negligent to not mention it.
answered 5 hours ago
SpitemasterSpitemaster
328129
328129
add a comment |
add a comment |
$begingroup$
Don't Fly, Fall with Style!
Ok, so it's going to involve flying too, but...
Your creature is going to have some way to control its buoyancy. Presumably muscles that change the shape slightly, thus changing the amount of air displaced, thus changing the buoyancy. So use this ability to your advantage.
The creature grows small wings or flippers. Not nearly enough to lift the creature, but enough to generate some lift. Now the creature can control it's flight by trading height for speed.
Your creature moves by:
- Expanding to increase buoyancy and increase altitude
- Contracting significantly, triggering a "fall"
- Using its "wings" to control the fall
- Expanding again before it hits the ground
Effectively, your creature copies the locomotion of birds of prey, only instead of using thermals to gain height, it uses buoyancy. The lift from the wings will have both horizontal and vertical components, so some of the energy will be converted into making the dive longer, and some of it will go into moving your creature towards its objective.
So your sky whales gracefully float upwards before suddenly diving in whatever direction they want to go.
$endgroup$
$begingroup$
The size and low mass of the creature are likely to make the dives "sudden", or even a "dive" in the conventional sense of the word (it'll probably be more of a very shallow glide), this is still probably a viable mobility method.
$endgroup$
– Gryphon
3 hours ago
add a comment |
$begingroup$
Don't Fly, Fall with Style!
Ok, so it's going to involve flying too, but...
Your creature is going to have some way to control its buoyancy. Presumably muscles that change the shape slightly, thus changing the amount of air displaced, thus changing the buoyancy. So use this ability to your advantage.
The creature grows small wings or flippers. Not nearly enough to lift the creature, but enough to generate some lift. Now the creature can control it's flight by trading height for speed.
Your creature moves by:
- Expanding to increase buoyancy and increase altitude
- Contracting significantly, triggering a "fall"
- Using its "wings" to control the fall
- Expanding again before it hits the ground
Effectively, your creature copies the locomotion of birds of prey, only instead of using thermals to gain height, it uses buoyancy. The lift from the wings will have both horizontal and vertical components, so some of the energy will be converted into making the dive longer, and some of it will go into moving your creature towards its objective.
So your sky whales gracefully float upwards before suddenly diving in whatever direction they want to go.
$endgroup$
$begingroup$
The size and low mass of the creature are likely to make the dives "sudden", or even a "dive" in the conventional sense of the word (it'll probably be more of a very shallow glide), this is still probably a viable mobility method.
$endgroup$
– Gryphon
3 hours ago
add a comment |
$begingroup$
Don't Fly, Fall with Style!
Ok, so it's going to involve flying too, but...
Your creature is going to have some way to control its buoyancy. Presumably muscles that change the shape slightly, thus changing the amount of air displaced, thus changing the buoyancy. So use this ability to your advantage.
The creature grows small wings or flippers. Not nearly enough to lift the creature, but enough to generate some lift. Now the creature can control it's flight by trading height for speed.
Your creature moves by:
- Expanding to increase buoyancy and increase altitude
- Contracting significantly, triggering a "fall"
- Using its "wings" to control the fall
- Expanding again before it hits the ground
Effectively, your creature copies the locomotion of birds of prey, only instead of using thermals to gain height, it uses buoyancy. The lift from the wings will have both horizontal and vertical components, so some of the energy will be converted into making the dive longer, and some of it will go into moving your creature towards its objective.
So your sky whales gracefully float upwards before suddenly diving in whatever direction they want to go.
$endgroup$
Don't Fly, Fall with Style!
Ok, so it's going to involve flying too, but...
Your creature is going to have some way to control its buoyancy. Presumably muscles that change the shape slightly, thus changing the amount of air displaced, thus changing the buoyancy. So use this ability to your advantage.
The creature grows small wings or flippers. Not nearly enough to lift the creature, but enough to generate some lift. Now the creature can control it's flight by trading height for speed.
Your creature moves by:
- Expanding to increase buoyancy and increase altitude
- Contracting significantly, triggering a "fall"
- Using its "wings" to control the fall
- Expanding again before it hits the ground
Effectively, your creature copies the locomotion of birds of prey, only instead of using thermals to gain height, it uses buoyancy. The lift from the wings will have both horizontal and vertical components, so some of the energy will be converted into making the dive longer, and some of it will go into moving your creature towards its objective.
So your sky whales gracefully float upwards before suddenly diving in whatever direction they want to go.
edited 3 hours ago
Gryphon
4,30823369
4,30823369
answered 6 hours ago
codeMonkeycodeMonkey
3,241819
3,241819
$begingroup$
The size and low mass of the creature are likely to make the dives "sudden", or even a "dive" in the conventional sense of the word (it'll probably be more of a very shallow glide), this is still probably a viable mobility method.
$endgroup$
– Gryphon
3 hours ago
add a comment |
$begingroup$
The size and low mass of the creature are likely to make the dives "sudden", or even a "dive" in the conventional sense of the word (it'll probably be more of a very shallow glide), this is still probably a viable mobility method.
$endgroup$
– Gryphon
3 hours ago
$begingroup$
The size and low mass of the creature are likely to make the dives "sudden", or even a "dive" in the conventional sense of the word (it'll probably be more of a very shallow glide), this is still probably a viable mobility method.
$endgroup$
– Gryphon
3 hours ago
$begingroup$
The size and low mass of the creature are likely to make the dives "sudden", or even a "dive" in the conventional sense of the word (it'll probably be more of a very shallow glide), this is still probably a viable mobility method.
$endgroup$
– Gryphon
3 hours ago
add a comment |
$begingroup$
For obvious reasons, wings are by far the best propulsion system as far as animals go.
Since that seems to not be possible due to that whale's anatomy however, and since we've already excluded flippers, I can think of two possible means of locomotion :
Jet propulsion : Such as the one squids use underwater by quickly ejecting water out of a valve, allowing them to reach great speeds. However due to the low density of air, jet propulsion would likely be very weak in terms of acceleration unless unrealistic amounts of pressure are applied. If you are thinking of a slower type of animal though that would be an idea.
No locomotion at all ! Some animals simply travel by drifting, such as jellyfish. Of course in the air that is not really an option, since food would probably be scarce thus depriving you of the luxury to drift aimlessly just waiting for food to land into your mouth.
In conclusion, the best option then would be a combination of both proposals, that is aerial whales that mainly navigate the wind currents by letting themselves drift along the currents, with the ability to (slightly) steer using jet propulsion. That way no enormous amounts of jet pressure would be needed, thus staying in the realm of plausibility.
$endgroup$
add a comment |
$begingroup$
For obvious reasons, wings are by far the best propulsion system as far as animals go.
Since that seems to not be possible due to that whale's anatomy however, and since we've already excluded flippers, I can think of two possible means of locomotion :
Jet propulsion : Such as the one squids use underwater by quickly ejecting water out of a valve, allowing them to reach great speeds. However due to the low density of air, jet propulsion would likely be very weak in terms of acceleration unless unrealistic amounts of pressure are applied. If you are thinking of a slower type of animal though that would be an idea.
No locomotion at all ! Some animals simply travel by drifting, such as jellyfish. Of course in the air that is not really an option, since food would probably be scarce thus depriving you of the luxury to drift aimlessly just waiting for food to land into your mouth.
In conclusion, the best option then would be a combination of both proposals, that is aerial whales that mainly navigate the wind currents by letting themselves drift along the currents, with the ability to (slightly) steer using jet propulsion. That way no enormous amounts of jet pressure would be needed, thus staying in the realm of plausibility.
$endgroup$
add a comment |
$begingroup$
For obvious reasons, wings are by far the best propulsion system as far as animals go.
Since that seems to not be possible due to that whale's anatomy however, and since we've already excluded flippers, I can think of two possible means of locomotion :
Jet propulsion : Such as the one squids use underwater by quickly ejecting water out of a valve, allowing them to reach great speeds. However due to the low density of air, jet propulsion would likely be very weak in terms of acceleration unless unrealistic amounts of pressure are applied. If you are thinking of a slower type of animal though that would be an idea.
No locomotion at all ! Some animals simply travel by drifting, such as jellyfish. Of course in the air that is not really an option, since food would probably be scarce thus depriving you of the luxury to drift aimlessly just waiting for food to land into your mouth.
In conclusion, the best option then would be a combination of both proposals, that is aerial whales that mainly navigate the wind currents by letting themselves drift along the currents, with the ability to (slightly) steer using jet propulsion. That way no enormous amounts of jet pressure would be needed, thus staying in the realm of plausibility.
$endgroup$
For obvious reasons, wings are by far the best propulsion system as far as animals go.
Since that seems to not be possible due to that whale's anatomy however, and since we've already excluded flippers, I can think of two possible means of locomotion :
Jet propulsion : Such as the one squids use underwater by quickly ejecting water out of a valve, allowing them to reach great speeds. However due to the low density of air, jet propulsion would likely be very weak in terms of acceleration unless unrealistic amounts of pressure are applied. If you are thinking of a slower type of animal though that would be an idea.
No locomotion at all ! Some animals simply travel by drifting, such as jellyfish. Of course in the air that is not really an option, since food would probably be scarce thus depriving you of the luxury to drift aimlessly just waiting for food to land into your mouth.
In conclusion, the best option then would be a combination of both proposals, that is aerial whales that mainly navigate the wind currents by letting themselves drift along the currents, with the ability to (slightly) steer using jet propulsion. That way no enormous amounts of jet pressure would be needed, thus staying in the realm of plausibility.
answered 10 hours ago
KaloyanKaloyan
22413
22413
add a comment |
add a comment |
$begingroup$
I think an animal like that would have the best chance if it mostly relied on:
- Following winds at different altitudes like a hot air balloon
- Having an omnivorous diet & not chasing any quick moving prey. Their diet could consist of nectar & tree top fruits, along w/ insects & maybe occasionally birds or squirrels
- Instead of chasing prey, relying entirely on passive mechanisms. One possibility would be an organ that charges in the sunlight to glow as an insect lure at night.
$endgroup$
add a comment |
$begingroup$
I think an animal like that would have the best chance if it mostly relied on:
- Following winds at different altitudes like a hot air balloon
- Having an omnivorous diet & not chasing any quick moving prey. Their diet could consist of nectar & tree top fruits, along w/ insects & maybe occasionally birds or squirrels
- Instead of chasing prey, relying entirely on passive mechanisms. One possibility would be an organ that charges in the sunlight to glow as an insect lure at night.
$endgroup$
add a comment |
$begingroup$
I think an animal like that would have the best chance if it mostly relied on:
- Following winds at different altitudes like a hot air balloon
- Having an omnivorous diet & not chasing any quick moving prey. Their diet could consist of nectar & tree top fruits, along w/ insects & maybe occasionally birds or squirrels
- Instead of chasing prey, relying entirely on passive mechanisms. One possibility would be an organ that charges in the sunlight to glow as an insect lure at night.
$endgroup$
I think an animal like that would have the best chance if it mostly relied on:
- Following winds at different altitudes like a hot air balloon
- Having an omnivorous diet & not chasing any quick moving prey. Their diet could consist of nectar & tree top fruits, along w/ insects & maybe occasionally birds or squirrels
- Instead of chasing prey, relying entirely on passive mechanisms. One possibility would be an organ that charges in the sunlight to glow as an insect lure at night.
answered 3 hours ago
Nathan SmithNathan Smith
30415
30415
add a comment |
add a comment |
Thanks for contributing an answer to Worldbuilding Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fworldbuilding.stackexchange.com%2fquestions%2f142043%2fbiological-blimps-propulsion%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
express.co.uk/news/science/686885/…
$endgroup$
– jean
7 hours ago