GCD of cubic polynomialsProve that if $gcd(a,b)=1$ then $gcd(ab,c) = gcd(a,c) gcd(b,c)$If $ar + bs =1$, then $gcd(a,s) = gcd(r,b) = gcd(r,s) = 1$gcd of an infinite subset of naturalsProving the gcd of two integers expressed as recursive statementsIf $gcd(m,n)=1$ and $q|mn$, then $exists d,e$ such that $q=de$, $d|m$, $e|n$, $gcd(d,e)=1$ and $gcd(fracmd,fracne)=1$.If $a$ and $b$ are coprime, some integral combination is coprime to $c$Prove that $gcd (a, b) = gcd (a, b + xa)$ for any $x in mathbbZ$.Expressing the GCD of 3 polynomials as a linear combination.GCD with Gaussian integersOn symmetric expressions of polynomials.

Does "he squandered his car on drink" sound natural?

Why do some congregations only make noise at certain occasions of Haman?

awk assign to multiple variables at once

What is the highest possible scrabble score for placing a single tile

Will number of steps recorded on FitBit/any fitness tracker add up distance in PokemonGo?

When were female captains banned from Starfleet?

Can I say "fingers" when referring to toes?

Make a Bowl of Alphabet Soup

What is the difference between lands and mana?

"It doesn't matter" or "it won't matter"?

Which Article Helped Get Rid of Technobabble in RPGs?

How to convince somebody that he is fit for something else, but not this job?

Can you use Vicious Mockery to win an argument or gain favours?

How to explain what's wrong with this application of the chain rule?

It grows, but water kills it

Creating two special characters

Why does this expression simplify as such?

How to draw a matrix with arrows in limited space

Why do ¬, ∀ and ∃ have the same precedence?

How many arrows is an archer expected to fire by the end of the Tyranny of Dragons pair of adventures?

Delete multiple columns using awk or sed

Did the UK lift the requirement for registering SIM cards?

Does the Linux kernel need a file system to run?

Has the laser at Magurele, Romania reached a tenth of the Sun's power?



GCD of cubic polynomials


Prove that if $gcd(a,b)=1$ then $gcd(ab,c) = gcd(a,c) gcd(b,c)$If $ar + bs =1$, then $gcd(a,s) = gcd(r,b) = gcd(r,s) = 1$gcd of an infinite subset of naturalsProving the gcd of two integers expressed as recursive statementsIf $gcd(m,n)=1$ and $q|mn$, then $exists d,e$ such that $q=de$, $d|m$, $e|n$, $gcd(d,e)=1$ and $gcd(fracmd,fracne)=1$.If $a$ and $b$ are coprime, some integral combination is coprime to $c$Prove that $gcd (a, b) = gcd (a, b + xa)$ for any $x in mathbbZ$.Expressing the GCD of 3 polynomials as a linear combination.GCD with Gaussian integersOn symmetric expressions of polynomials.













3












$begingroup$


I would appreciate some help finding $GCD(a^3-3ab^2, b^3-3ba^2)$; $a,b in mathbbZ$. So far I've got here: if $GCD(a,b)=d$ then $exists alpha, beta$ so that $GCD(alpha, beta)=1$ and $alpha d=a$, $beta d=b$.



Therefore we know that $GCD(a^3-3ab^2, b^3-3ba^2)=d^3 GCD(alpha^3-3alpha beta^2, beta^3-3beta alpha^2)$. However I don't know to figure out $GCD(alpha^3-3alpha beta^2, beta^3-3beta alpha^2)$ given that $GCD(alpha,beta)=1$.










share|cite|improve this question









$endgroup$











  • $begingroup$
    I meant that a and b are integers.
    $endgroup$
    – Oleksandr
    12 hours ago










  • $begingroup$
    For integers, it can have many values. What do you want to prove?
    $endgroup$
    – Dietrich Burde
    12 hours ago










  • $begingroup$
    I want to find the explicit formula for GCD of those two polynomials in terms of GCD of a and b.
    $endgroup$
    – Oleksandr
    12 hours ago















3












$begingroup$


I would appreciate some help finding $GCD(a^3-3ab^2, b^3-3ba^2)$; $a,b in mathbbZ$. So far I've got here: if $GCD(a,b)=d$ then $exists alpha, beta$ so that $GCD(alpha, beta)=1$ and $alpha d=a$, $beta d=b$.



Therefore we know that $GCD(a^3-3ab^2, b^3-3ba^2)=d^3 GCD(alpha^3-3alpha beta^2, beta^3-3beta alpha^2)$. However I don't know to figure out $GCD(alpha^3-3alpha beta^2, beta^3-3beta alpha^2)$ given that $GCD(alpha,beta)=1$.










share|cite|improve this question









$endgroup$











  • $begingroup$
    I meant that a and b are integers.
    $endgroup$
    – Oleksandr
    12 hours ago










  • $begingroup$
    For integers, it can have many values. What do you want to prove?
    $endgroup$
    – Dietrich Burde
    12 hours ago










  • $begingroup$
    I want to find the explicit formula for GCD of those two polynomials in terms of GCD of a and b.
    $endgroup$
    – Oleksandr
    12 hours ago













3












3








3


0



$begingroup$


I would appreciate some help finding $GCD(a^3-3ab^2, b^3-3ba^2)$; $a,b in mathbbZ$. So far I've got here: if $GCD(a,b)=d$ then $exists alpha, beta$ so that $GCD(alpha, beta)=1$ and $alpha d=a$, $beta d=b$.



Therefore we know that $GCD(a^3-3ab^2, b^3-3ba^2)=d^3 GCD(alpha^3-3alpha beta^2, beta^3-3beta alpha^2)$. However I don't know to figure out $GCD(alpha^3-3alpha beta^2, beta^3-3beta alpha^2)$ given that $GCD(alpha,beta)=1$.










share|cite|improve this question









$endgroup$




I would appreciate some help finding $GCD(a^3-3ab^2, b^3-3ba^2)$; $a,b in mathbbZ$. So far I've got here: if $GCD(a,b)=d$ then $exists alpha, beta$ so that $GCD(alpha, beta)=1$ and $alpha d=a$, $beta d=b$.



Therefore we know that $GCD(a^3-3ab^2, b^3-3ba^2)=d^3 GCD(alpha^3-3alpha beta^2, beta^3-3beta alpha^2)$. However I don't know to figure out $GCD(alpha^3-3alpha beta^2, beta^3-3beta alpha^2)$ given that $GCD(alpha,beta)=1$.







number-theory polynomials greatest-common-divisor






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 13 hours ago









OleksandrOleksandr

644




644











  • $begingroup$
    I meant that a and b are integers.
    $endgroup$
    – Oleksandr
    12 hours ago










  • $begingroup$
    For integers, it can have many values. What do you want to prove?
    $endgroup$
    – Dietrich Burde
    12 hours ago










  • $begingroup$
    I want to find the explicit formula for GCD of those two polynomials in terms of GCD of a and b.
    $endgroup$
    – Oleksandr
    12 hours ago
















  • $begingroup$
    I meant that a and b are integers.
    $endgroup$
    – Oleksandr
    12 hours ago










  • $begingroup$
    For integers, it can have many values. What do you want to prove?
    $endgroup$
    – Dietrich Burde
    12 hours ago










  • $begingroup$
    I want to find the explicit formula for GCD of those two polynomials in terms of GCD of a and b.
    $endgroup$
    – Oleksandr
    12 hours ago















$begingroup$
I meant that a and b are integers.
$endgroup$
– Oleksandr
12 hours ago




$begingroup$
I meant that a and b are integers.
$endgroup$
– Oleksandr
12 hours ago












$begingroup$
For integers, it can have many values. What do you want to prove?
$endgroup$
– Dietrich Burde
12 hours ago




$begingroup$
For integers, it can have many values. What do you want to prove?
$endgroup$
– Dietrich Burde
12 hours ago












$begingroup$
I want to find the explicit formula for GCD of those two polynomials in terms of GCD of a and b.
$endgroup$
– Oleksandr
12 hours ago




$begingroup$
I want to find the explicit formula for GCD of those two polynomials in terms of GCD of a and b.
$endgroup$
– Oleksandr
12 hours ago










3 Answers
3






active

oldest

votes


















4












$begingroup$

As you've already shown, factoring out the cube of the GCD of $a$ and $b$ gives a new equation



$$e = gcdleft(alpha^3-3alpha beta^2, beta^3-3beta alpha^2 right) tag1labeleq1$$



where



$$gcdleft(alpha,beta right) = 1 tag2labeleq2$$



Update: Here is a simpler solution than what I originally wrote. First, note that no factor of $e$ may divide $alpha$ or $beta$. If any do, let's say $alpha$, then it must divide $beta^3 - 3betaalpha^2$ and, thus, must divide $beta^3$, which is not possible due to eqrefeq2. Thus, from the first term of eqrefeq1, since $alpha^3-3alpha beta^2 = alphaleft(alpha^2 - 3beta^2right)$, this means that $e mid alpha^2 - 3beta^2$. Similarly, for the second term, $beta^3-3beta alpha^2 = betaleft(beta^2 - 3alpha^2right)$ gives that $e mid beta^2 - 3alpha^2$. Also, $e$ must divide any linear combination of these values, including $e | alpha^2 - 3beta^2 + 3left(beta^2 - 3alpha^2right) = -8alpha^2$. Thus, $e$ can only be a power of $2$. To finish this off, go to the second last paragraph. Otherwise, for the rest of the original, longer solution, continue reading.



$ $



Next, note that if $f = gcd(g,h)$, then $f$ divides $g$ and $h$ and, thus, will also divide any linear combination of $g$ and $h$, including their sum & difference. From eqrefeq1, first check the sum of the $2$ inside values:



beginalign
alpha^3-3alpha beta^2 + beta^3-3beta alpha^2 & = alpha^3 + beta^3 -3left(alpha betaright)beta - 3left(alpha betaright)alpha \
& = left(alpha + betaright)left(alpha^2 - alphabeta + beta^2right) - 3alphabetaleft(alpha + betaright) \
& = left(alpha + betaright)left(alpha^2 - 4alphabeta + beta^2right) tag3labeleq3
endalign



Suppose there's a factor $m gt 1$ which divides $e$ and $alpha + beta$. Then, $alpha equiv -beta pmod m$, so $alpha^3-3alpha beta^2 equiv 2beta^3 pmod m$. From eqrefeq2, this means that $m = 2$, and that any other factors of $e$ must divide $alpha^2 - 4alphabeta + beta^2$.



From eqrefeq1, next check the difference of the $2$ inside values:



beginalign
alpha^3-3alpha beta^2 - beta^3 + 3beta alpha^2 & = alpha^3 - beta^3 -3left(alpha betaright)beta + 3left(alpha betaright)alpha \
& = left(alpha - betaright)left(alpha^2 + alphabeta + beta^2right) + 3alphabetaleft(alpha - betaright) \
& = left(alpha - betaright)left(alpha^2 + 4alphabeta + beta^2right) tag4labeleq4
endalign



Suppose there's a factor $n gt 1$ which divides $e$ and $alpha - beta$. Then, $alpha equiv beta pmod n$, so $alpha^3-3alpha beta^2 equiv -2beta^3 pmod m$. From eqrefeq2, this means that $n = 2$, and that any other factors of $e$ must divide $alpha^2 + 4alphabeta + beta^2$.



This shows that any factor, other than $2$, which divides $e$ must divide both $alpha^2 - 4alphabeta + beta^2$ and $alpha^2 + 4alphabeta + beta^2$. Thus, it must also divide their difference, which is $8alphabeta$. This can only be true for $2$, $4$ or $8$.



At this shows overall, only powers of $2$ may possibly divide $e$. Since $e$ is relatively prime to $alpha$ & $beta$, this means they must both be odd. From $alpha^3 - 3alphabeta^2 = alphaleft(alpha^2 - 3beta^2right)$, note that $alpha^2 equiv beta^2 equiv 1 pmod 4$, so $alpha^2 - 3beta^2 equiv -2 pmod 4$. In other words, there will only be $1$ factor of $2$.



In summary, with your original equation of $d = gcdleft(a,bright)$, we get that $gcdleft(a^3-3ab^2, b^3-3ba^2right)$ is $2d^3$ if both $fracad$ and $fracbd$ are odd, else it's $d^3$.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Wow, this is an outstanding explanation and it completely solves the problem. Thank you very much.
    $endgroup$
    – Oleksandr
    10 hours ago






  • 1




    $begingroup$
    @Oleksandr You are welcome. I had put in, removed (as I temporarily thought it was wrong) and now put back a shorter, simpler solution near the start of the answer. Sorry for any confusion my back & forth may have caused with this.
    $endgroup$
    – John Omielan
    10 hours ago



















3












$begingroup$

Note that $alpha^3 - 3 alpha beta^2$ and $3betaalpha^2 - beta^3$ are the real and imaginary parts respectively of $(alpha + i beta)^3$; this suggests that it will be useful to work in the ring of Gaussian integers $mathbbZ[i]$.



Now, suppose that for some integer prime $p$, $p mid alpha^3 - 3alpha beta^2$ and $pmid 3betaalpha^2 - beta^3$; then $p mid (alpha + i beta)^3$. If $p equiv 3 pmod4$, then $p$ remains irreducible in $mathbbZ[i]$, so $p mid alpha + i beta$, implying that $p mid gcd_mathbbZ(alpha, beta)$ which gives a contradiction. Similarly, if $p equiv 1 pmod4$, then the factorization of $p$ into irreducibles is of the form $p = (c + di) (c - di)$ for some $c, d in mathbbZ$. Thus, $c + di mid (alpha + i beta)^3$ implies $c + di mid alpha + ibeta$ and $c - di mid (alpha + ibeta)^3$ implies $c - di mid alpha + i beta$. Since $c + di$ and $c - di$ are relatively prime in $mathbbZ[i]$ (being irreducibles which do not differ by multiplication by a unit), this implies $(c + di) (c - di) mid alpha + i beta$; in other words, $p mid alpha + i beta$, again giving a contradiction.



The only remaining possibility is $p = 2$ which factors as $-i (1+i)^2$ in $mathbbZ[i]$. Now, by a similar argument to the above we have $(1 + i)^2 nmid alpha + beta i$, so the order of $1+i$ in $(alpha + beta i)^3$ is either 0 or 3. In the former case we get that $gcd(alpha^3 - 3alphabeta^2, 3betaalpha^2 - beta^3) = 1$, and in the latter case we get that $gcd(alpha^3 - 3alphabeta^2, 3betaalpha^2 - beta^3) = 2$.




Note that this solution is very closely tied to the exact form of the polynomials under consideration; whereas the general idea of John Omielan's answer should be more generally applicable to other cases.






share|cite|improve this answer









$endgroup$




















    0












    $begingroup$

    I'll write $alpha=m,beta=n$ for the ease of typing



    If $d(ge1)$ divides $m^3-3mn^2,n^3-3m^2n$



    $d$ will divide $n(m^3-3mn^2)+3m(n^3-3m^2n)=-8m^3n$



    and $3n(m^3-3mn^2)+m(n^3-3m^2n)=-8mn^3$



    Consequently, $d$ must divide $(-8m^3n,-8mn^3)=8mn(m^2,n^2)=8mn$



    So, $d$ will divide $8$



    As $(m,n)=1,$ both $m,n$ cannot be even



    If $m$ is even, $n^3-3m^2n$ will be odd $implies d=1$



    If both $m,n$ are odd,. $m^2,n^2equiv1pmod8$



    $m(m^2-3n^2)equiv m(1-3)equiv-2mpmod8$



    Similarly, we can establish the highest power of $2$ in $m^3-3mn^2$ will be $2$



    $implies d=2$ if $m,n$ are odd






    share|cite|improve this answer









    $endgroup$












      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3156949%2fgcd-of-cubic-polynomials%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      4












      $begingroup$

      As you've already shown, factoring out the cube of the GCD of $a$ and $b$ gives a new equation



      $$e = gcdleft(alpha^3-3alpha beta^2, beta^3-3beta alpha^2 right) tag1labeleq1$$



      where



      $$gcdleft(alpha,beta right) = 1 tag2labeleq2$$



      Update: Here is a simpler solution than what I originally wrote. First, note that no factor of $e$ may divide $alpha$ or $beta$. If any do, let's say $alpha$, then it must divide $beta^3 - 3betaalpha^2$ and, thus, must divide $beta^3$, which is not possible due to eqrefeq2. Thus, from the first term of eqrefeq1, since $alpha^3-3alpha beta^2 = alphaleft(alpha^2 - 3beta^2right)$, this means that $e mid alpha^2 - 3beta^2$. Similarly, for the second term, $beta^3-3beta alpha^2 = betaleft(beta^2 - 3alpha^2right)$ gives that $e mid beta^2 - 3alpha^2$. Also, $e$ must divide any linear combination of these values, including $e | alpha^2 - 3beta^2 + 3left(beta^2 - 3alpha^2right) = -8alpha^2$. Thus, $e$ can only be a power of $2$. To finish this off, go to the second last paragraph. Otherwise, for the rest of the original, longer solution, continue reading.



      $ $



      Next, note that if $f = gcd(g,h)$, then $f$ divides $g$ and $h$ and, thus, will also divide any linear combination of $g$ and $h$, including their sum & difference. From eqrefeq1, first check the sum of the $2$ inside values:



      beginalign
      alpha^3-3alpha beta^2 + beta^3-3beta alpha^2 & = alpha^3 + beta^3 -3left(alpha betaright)beta - 3left(alpha betaright)alpha \
      & = left(alpha + betaright)left(alpha^2 - alphabeta + beta^2right) - 3alphabetaleft(alpha + betaright) \
      & = left(alpha + betaright)left(alpha^2 - 4alphabeta + beta^2right) tag3labeleq3
      endalign



      Suppose there's a factor $m gt 1$ which divides $e$ and $alpha + beta$. Then, $alpha equiv -beta pmod m$, so $alpha^3-3alpha beta^2 equiv 2beta^3 pmod m$. From eqrefeq2, this means that $m = 2$, and that any other factors of $e$ must divide $alpha^2 - 4alphabeta + beta^2$.



      From eqrefeq1, next check the difference of the $2$ inside values:



      beginalign
      alpha^3-3alpha beta^2 - beta^3 + 3beta alpha^2 & = alpha^3 - beta^3 -3left(alpha betaright)beta + 3left(alpha betaright)alpha \
      & = left(alpha - betaright)left(alpha^2 + alphabeta + beta^2right) + 3alphabetaleft(alpha - betaright) \
      & = left(alpha - betaright)left(alpha^2 + 4alphabeta + beta^2right) tag4labeleq4
      endalign



      Suppose there's a factor $n gt 1$ which divides $e$ and $alpha - beta$. Then, $alpha equiv beta pmod n$, so $alpha^3-3alpha beta^2 equiv -2beta^3 pmod m$. From eqrefeq2, this means that $n = 2$, and that any other factors of $e$ must divide $alpha^2 + 4alphabeta + beta^2$.



      This shows that any factor, other than $2$, which divides $e$ must divide both $alpha^2 - 4alphabeta + beta^2$ and $alpha^2 + 4alphabeta + beta^2$. Thus, it must also divide their difference, which is $8alphabeta$. This can only be true for $2$, $4$ or $8$.



      At this shows overall, only powers of $2$ may possibly divide $e$. Since $e$ is relatively prime to $alpha$ & $beta$, this means they must both be odd. From $alpha^3 - 3alphabeta^2 = alphaleft(alpha^2 - 3beta^2right)$, note that $alpha^2 equiv beta^2 equiv 1 pmod 4$, so $alpha^2 - 3beta^2 equiv -2 pmod 4$. In other words, there will only be $1$ factor of $2$.



      In summary, with your original equation of $d = gcdleft(a,bright)$, we get that $gcdleft(a^3-3ab^2, b^3-3ba^2right)$ is $2d^3$ if both $fracad$ and $fracbd$ are odd, else it's $d^3$.






      share|cite|improve this answer











      $endgroup$












      • $begingroup$
        Wow, this is an outstanding explanation and it completely solves the problem. Thank you very much.
        $endgroup$
        – Oleksandr
        10 hours ago






      • 1




        $begingroup$
        @Oleksandr You are welcome. I had put in, removed (as I temporarily thought it was wrong) and now put back a shorter, simpler solution near the start of the answer. Sorry for any confusion my back & forth may have caused with this.
        $endgroup$
        – John Omielan
        10 hours ago
















      4












      $begingroup$

      As you've already shown, factoring out the cube of the GCD of $a$ and $b$ gives a new equation



      $$e = gcdleft(alpha^3-3alpha beta^2, beta^3-3beta alpha^2 right) tag1labeleq1$$



      where



      $$gcdleft(alpha,beta right) = 1 tag2labeleq2$$



      Update: Here is a simpler solution than what I originally wrote. First, note that no factor of $e$ may divide $alpha$ or $beta$. If any do, let's say $alpha$, then it must divide $beta^3 - 3betaalpha^2$ and, thus, must divide $beta^3$, which is not possible due to eqrefeq2. Thus, from the first term of eqrefeq1, since $alpha^3-3alpha beta^2 = alphaleft(alpha^2 - 3beta^2right)$, this means that $e mid alpha^2 - 3beta^2$. Similarly, for the second term, $beta^3-3beta alpha^2 = betaleft(beta^2 - 3alpha^2right)$ gives that $e mid beta^2 - 3alpha^2$. Also, $e$ must divide any linear combination of these values, including $e | alpha^2 - 3beta^2 + 3left(beta^2 - 3alpha^2right) = -8alpha^2$. Thus, $e$ can only be a power of $2$. To finish this off, go to the second last paragraph. Otherwise, for the rest of the original, longer solution, continue reading.



      $ $



      Next, note that if $f = gcd(g,h)$, then $f$ divides $g$ and $h$ and, thus, will also divide any linear combination of $g$ and $h$, including their sum & difference. From eqrefeq1, first check the sum of the $2$ inside values:



      beginalign
      alpha^3-3alpha beta^2 + beta^3-3beta alpha^2 & = alpha^3 + beta^3 -3left(alpha betaright)beta - 3left(alpha betaright)alpha \
      & = left(alpha + betaright)left(alpha^2 - alphabeta + beta^2right) - 3alphabetaleft(alpha + betaright) \
      & = left(alpha + betaright)left(alpha^2 - 4alphabeta + beta^2right) tag3labeleq3
      endalign



      Suppose there's a factor $m gt 1$ which divides $e$ and $alpha + beta$. Then, $alpha equiv -beta pmod m$, so $alpha^3-3alpha beta^2 equiv 2beta^3 pmod m$. From eqrefeq2, this means that $m = 2$, and that any other factors of $e$ must divide $alpha^2 - 4alphabeta + beta^2$.



      From eqrefeq1, next check the difference of the $2$ inside values:



      beginalign
      alpha^3-3alpha beta^2 - beta^3 + 3beta alpha^2 & = alpha^3 - beta^3 -3left(alpha betaright)beta + 3left(alpha betaright)alpha \
      & = left(alpha - betaright)left(alpha^2 + alphabeta + beta^2right) + 3alphabetaleft(alpha - betaright) \
      & = left(alpha - betaright)left(alpha^2 + 4alphabeta + beta^2right) tag4labeleq4
      endalign



      Suppose there's a factor $n gt 1$ which divides $e$ and $alpha - beta$. Then, $alpha equiv beta pmod n$, so $alpha^3-3alpha beta^2 equiv -2beta^3 pmod m$. From eqrefeq2, this means that $n = 2$, and that any other factors of $e$ must divide $alpha^2 + 4alphabeta + beta^2$.



      This shows that any factor, other than $2$, which divides $e$ must divide both $alpha^2 - 4alphabeta + beta^2$ and $alpha^2 + 4alphabeta + beta^2$. Thus, it must also divide their difference, which is $8alphabeta$. This can only be true for $2$, $4$ or $8$.



      At this shows overall, only powers of $2$ may possibly divide $e$. Since $e$ is relatively prime to $alpha$ & $beta$, this means they must both be odd. From $alpha^3 - 3alphabeta^2 = alphaleft(alpha^2 - 3beta^2right)$, note that $alpha^2 equiv beta^2 equiv 1 pmod 4$, so $alpha^2 - 3beta^2 equiv -2 pmod 4$. In other words, there will only be $1$ factor of $2$.



      In summary, with your original equation of $d = gcdleft(a,bright)$, we get that $gcdleft(a^3-3ab^2, b^3-3ba^2right)$ is $2d^3$ if both $fracad$ and $fracbd$ are odd, else it's $d^3$.






      share|cite|improve this answer











      $endgroup$












      • $begingroup$
        Wow, this is an outstanding explanation and it completely solves the problem. Thank you very much.
        $endgroup$
        – Oleksandr
        10 hours ago






      • 1




        $begingroup$
        @Oleksandr You are welcome. I had put in, removed (as I temporarily thought it was wrong) and now put back a shorter, simpler solution near the start of the answer. Sorry for any confusion my back & forth may have caused with this.
        $endgroup$
        – John Omielan
        10 hours ago














      4












      4








      4





      $begingroup$

      As you've already shown, factoring out the cube of the GCD of $a$ and $b$ gives a new equation



      $$e = gcdleft(alpha^3-3alpha beta^2, beta^3-3beta alpha^2 right) tag1labeleq1$$



      where



      $$gcdleft(alpha,beta right) = 1 tag2labeleq2$$



      Update: Here is a simpler solution than what I originally wrote. First, note that no factor of $e$ may divide $alpha$ or $beta$. If any do, let's say $alpha$, then it must divide $beta^3 - 3betaalpha^2$ and, thus, must divide $beta^3$, which is not possible due to eqrefeq2. Thus, from the first term of eqrefeq1, since $alpha^3-3alpha beta^2 = alphaleft(alpha^2 - 3beta^2right)$, this means that $e mid alpha^2 - 3beta^2$. Similarly, for the second term, $beta^3-3beta alpha^2 = betaleft(beta^2 - 3alpha^2right)$ gives that $e mid beta^2 - 3alpha^2$. Also, $e$ must divide any linear combination of these values, including $e | alpha^2 - 3beta^2 + 3left(beta^2 - 3alpha^2right) = -8alpha^2$. Thus, $e$ can only be a power of $2$. To finish this off, go to the second last paragraph. Otherwise, for the rest of the original, longer solution, continue reading.



      $ $



      Next, note that if $f = gcd(g,h)$, then $f$ divides $g$ and $h$ and, thus, will also divide any linear combination of $g$ and $h$, including their sum & difference. From eqrefeq1, first check the sum of the $2$ inside values:



      beginalign
      alpha^3-3alpha beta^2 + beta^3-3beta alpha^2 & = alpha^3 + beta^3 -3left(alpha betaright)beta - 3left(alpha betaright)alpha \
      & = left(alpha + betaright)left(alpha^2 - alphabeta + beta^2right) - 3alphabetaleft(alpha + betaright) \
      & = left(alpha + betaright)left(alpha^2 - 4alphabeta + beta^2right) tag3labeleq3
      endalign



      Suppose there's a factor $m gt 1$ which divides $e$ and $alpha + beta$. Then, $alpha equiv -beta pmod m$, so $alpha^3-3alpha beta^2 equiv 2beta^3 pmod m$. From eqrefeq2, this means that $m = 2$, and that any other factors of $e$ must divide $alpha^2 - 4alphabeta + beta^2$.



      From eqrefeq1, next check the difference of the $2$ inside values:



      beginalign
      alpha^3-3alpha beta^2 - beta^3 + 3beta alpha^2 & = alpha^3 - beta^3 -3left(alpha betaright)beta + 3left(alpha betaright)alpha \
      & = left(alpha - betaright)left(alpha^2 + alphabeta + beta^2right) + 3alphabetaleft(alpha - betaright) \
      & = left(alpha - betaright)left(alpha^2 + 4alphabeta + beta^2right) tag4labeleq4
      endalign



      Suppose there's a factor $n gt 1$ which divides $e$ and $alpha - beta$. Then, $alpha equiv beta pmod n$, so $alpha^3-3alpha beta^2 equiv -2beta^3 pmod m$. From eqrefeq2, this means that $n = 2$, and that any other factors of $e$ must divide $alpha^2 + 4alphabeta + beta^2$.



      This shows that any factor, other than $2$, which divides $e$ must divide both $alpha^2 - 4alphabeta + beta^2$ and $alpha^2 + 4alphabeta + beta^2$. Thus, it must also divide their difference, which is $8alphabeta$. This can only be true for $2$, $4$ or $8$.



      At this shows overall, only powers of $2$ may possibly divide $e$. Since $e$ is relatively prime to $alpha$ & $beta$, this means they must both be odd. From $alpha^3 - 3alphabeta^2 = alphaleft(alpha^2 - 3beta^2right)$, note that $alpha^2 equiv beta^2 equiv 1 pmod 4$, so $alpha^2 - 3beta^2 equiv -2 pmod 4$. In other words, there will only be $1$ factor of $2$.



      In summary, with your original equation of $d = gcdleft(a,bright)$, we get that $gcdleft(a^3-3ab^2, b^3-3ba^2right)$ is $2d^3$ if both $fracad$ and $fracbd$ are odd, else it's $d^3$.






      share|cite|improve this answer











      $endgroup$



      As you've already shown, factoring out the cube of the GCD of $a$ and $b$ gives a new equation



      $$e = gcdleft(alpha^3-3alpha beta^2, beta^3-3beta alpha^2 right) tag1labeleq1$$



      where



      $$gcdleft(alpha,beta right) = 1 tag2labeleq2$$



      Update: Here is a simpler solution than what I originally wrote. First, note that no factor of $e$ may divide $alpha$ or $beta$. If any do, let's say $alpha$, then it must divide $beta^3 - 3betaalpha^2$ and, thus, must divide $beta^3$, which is not possible due to eqrefeq2. Thus, from the first term of eqrefeq1, since $alpha^3-3alpha beta^2 = alphaleft(alpha^2 - 3beta^2right)$, this means that $e mid alpha^2 - 3beta^2$. Similarly, for the second term, $beta^3-3beta alpha^2 = betaleft(beta^2 - 3alpha^2right)$ gives that $e mid beta^2 - 3alpha^2$. Also, $e$ must divide any linear combination of these values, including $e | alpha^2 - 3beta^2 + 3left(beta^2 - 3alpha^2right) = -8alpha^2$. Thus, $e$ can only be a power of $2$. To finish this off, go to the second last paragraph. Otherwise, for the rest of the original, longer solution, continue reading.



      $ $



      Next, note that if $f = gcd(g,h)$, then $f$ divides $g$ and $h$ and, thus, will also divide any linear combination of $g$ and $h$, including their sum & difference. From eqrefeq1, first check the sum of the $2$ inside values:



      beginalign
      alpha^3-3alpha beta^2 + beta^3-3beta alpha^2 & = alpha^3 + beta^3 -3left(alpha betaright)beta - 3left(alpha betaright)alpha \
      & = left(alpha + betaright)left(alpha^2 - alphabeta + beta^2right) - 3alphabetaleft(alpha + betaright) \
      & = left(alpha + betaright)left(alpha^2 - 4alphabeta + beta^2right) tag3labeleq3
      endalign



      Suppose there's a factor $m gt 1$ which divides $e$ and $alpha + beta$. Then, $alpha equiv -beta pmod m$, so $alpha^3-3alpha beta^2 equiv 2beta^3 pmod m$. From eqrefeq2, this means that $m = 2$, and that any other factors of $e$ must divide $alpha^2 - 4alphabeta + beta^2$.



      From eqrefeq1, next check the difference of the $2$ inside values:



      beginalign
      alpha^3-3alpha beta^2 - beta^3 + 3beta alpha^2 & = alpha^3 - beta^3 -3left(alpha betaright)beta + 3left(alpha betaright)alpha \
      & = left(alpha - betaright)left(alpha^2 + alphabeta + beta^2right) + 3alphabetaleft(alpha - betaright) \
      & = left(alpha - betaright)left(alpha^2 + 4alphabeta + beta^2right) tag4labeleq4
      endalign



      Suppose there's a factor $n gt 1$ which divides $e$ and $alpha - beta$. Then, $alpha equiv beta pmod n$, so $alpha^3-3alpha beta^2 equiv -2beta^3 pmod m$. From eqrefeq2, this means that $n = 2$, and that any other factors of $e$ must divide $alpha^2 + 4alphabeta + beta^2$.



      This shows that any factor, other than $2$, which divides $e$ must divide both $alpha^2 - 4alphabeta + beta^2$ and $alpha^2 + 4alphabeta + beta^2$. Thus, it must also divide their difference, which is $8alphabeta$. This can only be true for $2$, $4$ or $8$.



      At this shows overall, only powers of $2$ may possibly divide $e$. Since $e$ is relatively prime to $alpha$ & $beta$, this means they must both be odd. From $alpha^3 - 3alphabeta^2 = alphaleft(alpha^2 - 3beta^2right)$, note that $alpha^2 equiv beta^2 equiv 1 pmod 4$, so $alpha^2 - 3beta^2 equiv -2 pmod 4$. In other words, there will only be $1$ factor of $2$.



      In summary, with your original equation of $d = gcdleft(a,bright)$, we get that $gcdleft(a^3-3ab^2, b^3-3ba^2right)$ is $2d^3$ if both $fracad$ and $fracbd$ are odd, else it's $d^3$.







      share|cite|improve this answer














      share|cite|improve this answer



      share|cite|improve this answer








      edited 9 hours ago

























      answered 10 hours ago









      John OmielanJohn Omielan

      4,1251215




      4,1251215











      • $begingroup$
        Wow, this is an outstanding explanation and it completely solves the problem. Thank you very much.
        $endgroup$
        – Oleksandr
        10 hours ago






      • 1




        $begingroup$
        @Oleksandr You are welcome. I had put in, removed (as I temporarily thought it was wrong) and now put back a shorter, simpler solution near the start of the answer. Sorry for any confusion my back & forth may have caused with this.
        $endgroup$
        – John Omielan
        10 hours ago

















      • $begingroup$
        Wow, this is an outstanding explanation and it completely solves the problem. Thank you very much.
        $endgroup$
        – Oleksandr
        10 hours ago






      • 1




        $begingroup$
        @Oleksandr You are welcome. I had put in, removed (as I temporarily thought it was wrong) and now put back a shorter, simpler solution near the start of the answer. Sorry for any confusion my back & forth may have caused with this.
        $endgroup$
        – John Omielan
        10 hours ago
















      $begingroup$
      Wow, this is an outstanding explanation and it completely solves the problem. Thank you very much.
      $endgroup$
      – Oleksandr
      10 hours ago




      $begingroup$
      Wow, this is an outstanding explanation and it completely solves the problem. Thank you very much.
      $endgroup$
      – Oleksandr
      10 hours ago




      1




      1




      $begingroup$
      @Oleksandr You are welcome. I had put in, removed (as I temporarily thought it was wrong) and now put back a shorter, simpler solution near the start of the answer. Sorry for any confusion my back & forth may have caused with this.
      $endgroup$
      – John Omielan
      10 hours ago





      $begingroup$
      @Oleksandr You are welcome. I had put in, removed (as I temporarily thought it was wrong) and now put back a shorter, simpler solution near the start of the answer. Sorry for any confusion my back & forth may have caused with this.
      $endgroup$
      – John Omielan
      10 hours ago












      3












      $begingroup$

      Note that $alpha^3 - 3 alpha beta^2$ and $3betaalpha^2 - beta^3$ are the real and imaginary parts respectively of $(alpha + i beta)^3$; this suggests that it will be useful to work in the ring of Gaussian integers $mathbbZ[i]$.



      Now, suppose that for some integer prime $p$, $p mid alpha^3 - 3alpha beta^2$ and $pmid 3betaalpha^2 - beta^3$; then $p mid (alpha + i beta)^3$. If $p equiv 3 pmod4$, then $p$ remains irreducible in $mathbbZ[i]$, so $p mid alpha + i beta$, implying that $p mid gcd_mathbbZ(alpha, beta)$ which gives a contradiction. Similarly, if $p equiv 1 pmod4$, then the factorization of $p$ into irreducibles is of the form $p = (c + di) (c - di)$ for some $c, d in mathbbZ$. Thus, $c + di mid (alpha + i beta)^3$ implies $c + di mid alpha + ibeta$ and $c - di mid (alpha + ibeta)^3$ implies $c - di mid alpha + i beta$. Since $c + di$ and $c - di$ are relatively prime in $mathbbZ[i]$ (being irreducibles which do not differ by multiplication by a unit), this implies $(c + di) (c - di) mid alpha + i beta$; in other words, $p mid alpha + i beta$, again giving a contradiction.



      The only remaining possibility is $p = 2$ which factors as $-i (1+i)^2$ in $mathbbZ[i]$. Now, by a similar argument to the above we have $(1 + i)^2 nmid alpha + beta i$, so the order of $1+i$ in $(alpha + beta i)^3$ is either 0 or 3. In the former case we get that $gcd(alpha^3 - 3alphabeta^2, 3betaalpha^2 - beta^3) = 1$, and in the latter case we get that $gcd(alpha^3 - 3alphabeta^2, 3betaalpha^2 - beta^3) = 2$.




      Note that this solution is very closely tied to the exact form of the polynomials under consideration; whereas the general idea of John Omielan's answer should be more generally applicable to other cases.






      share|cite|improve this answer









      $endgroup$

















        3












        $begingroup$

        Note that $alpha^3 - 3 alpha beta^2$ and $3betaalpha^2 - beta^3$ are the real and imaginary parts respectively of $(alpha + i beta)^3$; this suggests that it will be useful to work in the ring of Gaussian integers $mathbbZ[i]$.



        Now, suppose that for some integer prime $p$, $p mid alpha^3 - 3alpha beta^2$ and $pmid 3betaalpha^2 - beta^3$; then $p mid (alpha + i beta)^3$. If $p equiv 3 pmod4$, then $p$ remains irreducible in $mathbbZ[i]$, so $p mid alpha + i beta$, implying that $p mid gcd_mathbbZ(alpha, beta)$ which gives a contradiction. Similarly, if $p equiv 1 pmod4$, then the factorization of $p$ into irreducibles is of the form $p = (c + di) (c - di)$ for some $c, d in mathbbZ$. Thus, $c + di mid (alpha + i beta)^3$ implies $c + di mid alpha + ibeta$ and $c - di mid (alpha + ibeta)^3$ implies $c - di mid alpha + i beta$. Since $c + di$ and $c - di$ are relatively prime in $mathbbZ[i]$ (being irreducibles which do not differ by multiplication by a unit), this implies $(c + di) (c - di) mid alpha + i beta$; in other words, $p mid alpha + i beta$, again giving a contradiction.



        The only remaining possibility is $p = 2$ which factors as $-i (1+i)^2$ in $mathbbZ[i]$. Now, by a similar argument to the above we have $(1 + i)^2 nmid alpha + beta i$, so the order of $1+i$ in $(alpha + beta i)^3$ is either 0 or 3. In the former case we get that $gcd(alpha^3 - 3alphabeta^2, 3betaalpha^2 - beta^3) = 1$, and in the latter case we get that $gcd(alpha^3 - 3alphabeta^2, 3betaalpha^2 - beta^3) = 2$.




        Note that this solution is very closely tied to the exact form of the polynomials under consideration; whereas the general idea of John Omielan's answer should be more generally applicable to other cases.






        share|cite|improve this answer









        $endgroup$















          3












          3








          3





          $begingroup$

          Note that $alpha^3 - 3 alpha beta^2$ and $3betaalpha^2 - beta^3$ are the real and imaginary parts respectively of $(alpha + i beta)^3$; this suggests that it will be useful to work in the ring of Gaussian integers $mathbbZ[i]$.



          Now, suppose that for some integer prime $p$, $p mid alpha^3 - 3alpha beta^2$ and $pmid 3betaalpha^2 - beta^3$; then $p mid (alpha + i beta)^3$. If $p equiv 3 pmod4$, then $p$ remains irreducible in $mathbbZ[i]$, so $p mid alpha + i beta$, implying that $p mid gcd_mathbbZ(alpha, beta)$ which gives a contradiction. Similarly, if $p equiv 1 pmod4$, then the factorization of $p$ into irreducibles is of the form $p = (c + di) (c - di)$ for some $c, d in mathbbZ$. Thus, $c + di mid (alpha + i beta)^3$ implies $c + di mid alpha + ibeta$ and $c - di mid (alpha + ibeta)^3$ implies $c - di mid alpha + i beta$. Since $c + di$ and $c - di$ are relatively prime in $mathbbZ[i]$ (being irreducibles which do not differ by multiplication by a unit), this implies $(c + di) (c - di) mid alpha + i beta$; in other words, $p mid alpha + i beta$, again giving a contradiction.



          The only remaining possibility is $p = 2$ which factors as $-i (1+i)^2$ in $mathbbZ[i]$. Now, by a similar argument to the above we have $(1 + i)^2 nmid alpha + beta i$, so the order of $1+i$ in $(alpha + beta i)^3$ is either 0 or 3. In the former case we get that $gcd(alpha^3 - 3alphabeta^2, 3betaalpha^2 - beta^3) = 1$, and in the latter case we get that $gcd(alpha^3 - 3alphabeta^2, 3betaalpha^2 - beta^3) = 2$.




          Note that this solution is very closely tied to the exact form of the polynomials under consideration; whereas the general idea of John Omielan's answer should be more generally applicable to other cases.






          share|cite|improve this answer









          $endgroup$



          Note that $alpha^3 - 3 alpha beta^2$ and $3betaalpha^2 - beta^3$ are the real and imaginary parts respectively of $(alpha + i beta)^3$; this suggests that it will be useful to work in the ring of Gaussian integers $mathbbZ[i]$.



          Now, suppose that for some integer prime $p$, $p mid alpha^3 - 3alpha beta^2$ and $pmid 3betaalpha^2 - beta^3$; then $p mid (alpha + i beta)^3$. If $p equiv 3 pmod4$, then $p$ remains irreducible in $mathbbZ[i]$, so $p mid alpha + i beta$, implying that $p mid gcd_mathbbZ(alpha, beta)$ which gives a contradiction. Similarly, if $p equiv 1 pmod4$, then the factorization of $p$ into irreducibles is of the form $p = (c + di) (c - di)$ for some $c, d in mathbbZ$. Thus, $c + di mid (alpha + i beta)^3$ implies $c + di mid alpha + ibeta$ and $c - di mid (alpha + ibeta)^3$ implies $c - di mid alpha + i beta$. Since $c + di$ and $c - di$ are relatively prime in $mathbbZ[i]$ (being irreducibles which do not differ by multiplication by a unit), this implies $(c + di) (c - di) mid alpha + i beta$; in other words, $p mid alpha + i beta$, again giving a contradiction.



          The only remaining possibility is $p = 2$ which factors as $-i (1+i)^2$ in $mathbbZ[i]$. Now, by a similar argument to the above we have $(1 + i)^2 nmid alpha + beta i$, so the order of $1+i$ in $(alpha + beta i)^3$ is either 0 or 3. In the former case we get that $gcd(alpha^3 - 3alphabeta^2, 3betaalpha^2 - beta^3) = 1$, and in the latter case we get that $gcd(alpha^3 - 3alphabeta^2, 3betaalpha^2 - beta^3) = 2$.




          Note that this solution is very closely tied to the exact form of the polynomials under consideration; whereas the general idea of John Omielan's answer should be more generally applicable to other cases.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 10 hours ago









          Daniel ScheplerDaniel Schepler

          9,2391821




          9,2391821





















              0












              $begingroup$

              I'll write $alpha=m,beta=n$ for the ease of typing



              If $d(ge1)$ divides $m^3-3mn^2,n^3-3m^2n$



              $d$ will divide $n(m^3-3mn^2)+3m(n^3-3m^2n)=-8m^3n$



              and $3n(m^3-3mn^2)+m(n^3-3m^2n)=-8mn^3$



              Consequently, $d$ must divide $(-8m^3n,-8mn^3)=8mn(m^2,n^2)=8mn$



              So, $d$ will divide $8$



              As $(m,n)=1,$ both $m,n$ cannot be even



              If $m$ is even, $n^3-3m^2n$ will be odd $implies d=1$



              If both $m,n$ are odd,. $m^2,n^2equiv1pmod8$



              $m(m^2-3n^2)equiv m(1-3)equiv-2mpmod8$



              Similarly, we can establish the highest power of $2$ in $m^3-3mn^2$ will be $2$



              $implies d=2$ if $m,n$ are odd






              share|cite|improve this answer









              $endgroup$

















                0












                $begingroup$

                I'll write $alpha=m,beta=n$ for the ease of typing



                If $d(ge1)$ divides $m^3-3mn^2,n^3-3m^2n$



                $d$ will divide $n(m^3-3mn^2)+3m(n^3-3m^2n)=-8m^3n$



                and $3n(m^3-3mn^2)+m(n^3-3m^2n)=-8mn^3$



                Consequently, $d$ must divide $(-8m^3n,-8mn^3)=8mn(m^2,n^2)=8mn$



                So, $d$ will divide $8$



                As $(m,n)=1,$ both $m,n$ cannot be even



                If $m$ is even, $n^3-3m^2n$ will be odd $implies d=1$



                If both $m,n$ are odd,. $m^2,n^2equiv1pmod8$



                $m(m^2-3n^2)equiv m(1-3)equiv-2mpmod8$



                Similarly, we can establish the highest power of $2$ in $m^3-3mn^2$ will be $2$



                $implies d=2$ if $m,n$ are odd






                share|cite|improve this answer









                $endgroup$















                  0












                  0








                  0





                  $begingroup$

                  I'll write $alpha=m,beta=n$ for the ease of typing



                  If $d(ge1)$ divides $m^3-3mn^2,n^3-3m^2n$



                  $d$ will divide $n(m^3-3mn^2)+3m(n^3-3m^2n)=-8m^3n$



                  and $3n(m^3-3mn^2)+m(n^3-3m^2n)=-8mn^3$



                  Consequently, $d$ must divide $(-8m^3n,-8mn^3)=8mn(m^2,n^2)=8mn$



                  So, $d$ will divide $8$



                  As $(m,n)=1,$ both $m,n$ cannot be even



                  If $m$ is even, $n^3-3m^2n$ will be odd $implies d=1$



                  If both $m,n$ are odd,. $m^2,n^2equiv1pmod8$



                  $m(m^2-3n^2)equiv m(1-3)equiv-2mpmod8$



                  Similarly, we can establish the highest power of $2$ in $m^3-3mn^2$ will be $2$



                  $implies d=2$ if $m,n$ are odd






                  share|cite|improve this answer









                  $endgroup$



                  I'll write $alpha=m,beta=n$ for the ease of typing



                  If $d(ge1)$ divides $m^3-3mn^2,n^3-3m^2n$



                  $d$ will divide $n(m^3-3mn^2)+3m(n^3-3m^2n)=-8m^3n$



                  and $3n(m^3-3mn^2)+m(n^3-3m^2n)=-8mn^3$



                  Consequently, $d$ must divide $(-8m^3n,-8mn^3)=8mn(m^2,n^2)=8mn$



                  So, $d$ will divide $8$



                  As $(m,n)=1,$ both $m,n$ cannot be even



                  If $m$ is even, $n^3-3m^2n$ will be odd $implies d=1$



                  If both $m,n$ are odd,. $m^2,n^2equiv1pmod8$



                  $m(m^2-3n^2)equiv m(1-3)equiv-2mpmod8$



                  Similarly, we can establish the highest power of $2$ in $m^3-3mn^2$ will be $2$



                  $implies d=2$ if $m,n$ are odd







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 3 hours ago









                  lab bhattacharjeelab bhattacharjee

                  227k15158276




                  227k15158276



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3156949%2fgcd-of-cubic-polynomials%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Reverse int within the 32-bit signed integer range: [−2^31, 2^31 − 1]Combining two 32-bit integers into one 64-bit integerDetermine if an int is within rangeLossy packing 32 bit integer to 16 bitComputing the square root of a 64-bit integerKeeping integer addition within boundsSafe multiplication of two 64-bit signed integersLeetcode 10: Regular Expression MatchingSigned integer-to-ascii x86_64 assembler macroReverse the digits of an Integer“Add two numbers given in reverse order from a linked list”

                      Category:Fedor von Bock Media in category "Fedor von Bock"Navigation menuUpload mediaISNI: 0000 0000 5511 3417VIAF ID: 24712551GND ID: 119294796Library of Congress authority ID: n96068363BnF ID: 12534305fSUDOC authorities ID: 034604189Open Library ID: OL338253ANKCR AUT ID: jn19990000869National Library of Israel ID: 000514068National Thesaurus for Author Names ID: 341574317ReasonatorScholiaStatistics

                      Kiel Indholdsfortegnelse Historie | Transport og færgeforbindelser | Sejlsport og anden sport | Kultur | Kendte personer fra Kiel | Noter | Litteratur | Eksterne henvisninger | Navigationsmenuwww.kiel.de54°19′31″N 10°8′26″Ø / 54.32528°N 10.14056°Ø / 54.32528; 10.14056Oberbürgermeister Dr. Ulf Kämpferwww.statistik-nord.deDen danske Stats StatistikKiels hjemmesiderrrWorldCat312794080n790547494030481-4