Is it possible to use a NPN BJT as switch, from single power source? The Next CEO of Stack OverflowSimple transistor switching example should show LED offProblems Getting NPN Bipolar Transistor to Switch OnUsing NPN transistor as switchWhat type of transistor would be required?Inverting a push buttonNPN transistor not switching 12V from microcontrollerUsing a single power source for both the gate and source of my transistor?Newbie Help - Trouble with NPN resistorUse current from SMD LED to switch larger currentHow to remove leakage current from nRES transistor switch?

Rotate a column

Would a completely good Muggle be able to use a wand?

Why isn't acceleration always zero whenever velocity is zero, such as the moment a ball bounces off a wall?

Why isn't the Mueller report being released completely and unredacted?

Why did CATV standarize in 75 ohms and everyone else in 50?

Won the lottery - how do I keep the money?

Help understanding this unsettling image of Titan, Epimetheus, and Saturn's rings?

Can a Bladesinger Wizard use Bladesong with a Hand Crossbow?

Why is information "lost" when it got into a black hole?

If Nick Fury and Coulson already knew about aliens (Kree and Skrull) why did they wait until Thor's appearance to start making weapons?

Which one is the true statement?

Writing differences on a blackboard

Is it okay to majorly distort historical facts while writing a fiction story?

Make solar eclipses exceedingly rare, but still have new moons

RigExpert AA-35 - Interpreting The Information

Should I tutor a student who I know has cheated on their homework?

What connection does MS Office have to Netscape Navigator?

What was the first Unix version to run on a microcomputer?

The past simple of "gaslight" – "gaslighted" or "gaslit"?

What flight has the highest ratio of time difference to flight time?

Why is the US ranked as #45 in Press Freedom ratings, despite its extremely permissive free speech laws?

How to invert MapIndexed on a ragged structure? How to construct a tree from rules?

Is there a difference between "Fahrstuhl" and "Aufzug"

Would this house-rule that treats advantage as a +1 to the roll instead (and disadvantage as -1) and allows them to stack be balanced?



Is it possible to use a NPN BJT as switch, from single power source?



The Next CEO of Stack OverflowSimple transistor switching example should show LED offProblems Getting NPN Bipolar Transistor to Switch OnUsing NPN transistor as switchWhat type of transistor would be required?Inverting a push buttonNPN transistor not switching 12V from microcontrollerUsing a single power source for both the gate and source of my transistor?Newbie Help - Trouble with NPN resistorUse current from SMD LED to switch larger currentHow to remove leakage current from nRES transistor switch?










2












$begingroup$


I'm attempting to build the following circuit to better understand how to use a NPN BJT as a switch.



What I've Tried



I'm calculating the current across the LED (in order to light it up) as:



5.2V* - 1.7V (LED drop) = 3.5V
3.5V / 17mA = 200Ohms


*NOTE - The power source is 5.2V because I'm using 4 AA rechargeables in series (at 1.3V each).



The Problem



The problem I see when I push the button to turn the circuit on is that the transistor becomes very hot. I noticed this the first time because I could smell something. Then I touched it. Ouch! :) I'm assuming I'm providing too much current on the be (base to emitter) circuit.



Things I've Tried / Additional Problem



However, when I attempt to add resistance into the be circuit then the LED doesn't light up, even when my resistor gets down to a value as low as 47Ohms.



Questions



  1. Is it possible (due to ratios of current needed) to even power both sides of the circuit from the same power source? Or is it ridiculously difficult or something and not done?

  2. Can you help me understand the additional calculation(s) I should be using to power the circuit so my LED will light when I push the button?

schematic





simulate this circuit – Schematic created using CircuitLab










share|improve this question









$endgroup$
















    2












    $begingroup$


    I'm attempting to build the following circuit to better understand how to use a NPN BJT as a switch.



    What I've Tried



    I'm calculating the current across the LED (in order to light it up) as:



    5.2V* - 1.7V (LED drop) = 3.5V
    3.5V / 17mA = 200Ohms


    *NOTE - The power source is 5.2V because I'm using 4 AA rechargeables in series (at 1.3V each).



    The Problem



    The problem I see when I push the button to turn the circuit on is that the transistor becomes very hot. I noticed this the first time because I could smell something. Then I touched it. Ouch! :) I'm assuming I'm providing too much current on the be (base to emitter) circuit.



    Things I've Tried / Additional Problem



    However, when I attempt to add resistance into the be circuit then the LED doesn't light up, even when my resistor gets down to a value as low as 47Ohms.



    Questions



    1. Is it possible (due to ratios of current needed) to even power both sides of the circuit from the same power source? Or is it ridiculously difficult or something and not done?

    2. Can you help me understand the additional calculation(s) I should be using to power the circuit so my LED will light when I push the button?

    schematic





    simulate this circuit – Schematic created using CircuitLab










    share|improve this question









    $endgroup$














      2












      2








      2





      $begingroup$


      I'm attempting to build the following circuit to better understand how to use a NPN BJT as a switch.



      What I've Tried



      I'm calculating the current across the LED (in order to light it up) as:



      5.2V* - 1.7V (LED drop) = 3.5V
      3.5V / 17mA = 200Ohms


      *NOTE - The power source is 5.2V because I'm using 4 AA rechargeables in series (at 1.3V each).



      The Problem



      The problem I see when I push the button to turn the circuit on is that the transistor becomes very hot. I noticed this the first time because I could smell something. Then I touched it. Ouch! :) I'm assuming I'm providing too much current on the be (base to emitter) circuit.



      Things I've Tried / Additional Problem



      However, when I attempt to add resistance into the be circuit then the LED doesn't light up, even when my resistor gets down to a value as low as 47Ohms.



      Questions



      1. Is it possible (due to ratios of current needed) to even power both sides of the circuit from the same power source? Or is it ridiculously difficult or something and not done?

      2. Can you help me understand the additional calculation(s) I should be using to power the circuit so my LED will light when I push the button?

      schematic





      simulate this circuit – Schematic created using CircuitLab










      share|improve this question









      $endgroup$




      I'm attempting to build the following circuit to better understand how to use a NPN BJT as a switch.



      What I've Tried



      I'm calculating the current across the LED (in order to light it up) as:



      5.2V* - 1.7V (LED drop) = 3.5V
      3.5V / 17mA = 200Ohms


      *NOTE - The power source is 5.2V because I'm using 4 AA rechargeables in series (at 1.3V each).



      The Problem



      The problem I see when I push the button to turn the circuit on is that the transistor becomes very hot. I noticed this the first time because I could smell something. Then I touched it. Ouch! :) I'm assuming I'm providing too much current on the be (base to emitter) circuit.



      Things I've Tried / Additional Problem



      However, when I attempt to add resistance into the be circuit then the LED doesn't light up, even when my resistor gets down to a value as low as 47Ohms.



      Questions



      1. Is it possible (due to ratios of current needed) to even power both sides of the circuit from the same power source? Or is it ridiculously difficult or something and not done?

      2. Can you help me understand the additional calculation(s) I should be using to power the circuit so my LED will light when I push the button?

      schematic





      simulate this circuit – Schematic created using CircuitLab







      transistors bjt switching






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked 3 hours ago









      raddevusraddevus

      4501519




      4501519




















          2 Answers
          2






          active

          oldest

          votes


















          2












          $begingroup$

          When you close the switch, you are applying 5.2 volts across the base/emitter junction, which normally doesn't like more than 0.7 volts - this will destroy the transistor.



          One way to use a switch and transistor to contol an LED is:





          schematic





          simulate this circuit – Schematic created using CircuitLab



          R2 will limit the base current when thet switch is closed. R3 pulls the base low when the switch is open, to ensure the transistor is not conducting.



          Pressing the switch will provide base current through R2, allowing the transistor to conduct, drawing current through the LED and R1. R1 limits the LED current to a safe value.






          share|improve this answer









          $endgroup$












          • $begingroup$
            Fantastic! Thanks very much for explaining that so clearly. I will try it out and mark this as answer later today or tomorrow.
            $endgroup$
            – raddevus
            2 hours ago


















          0












          $begingroup$

          Your circuit is not designed correctly for what you're trying to do. You currently have the BJT connected in parallel with the LED ciruit, instead of being in series with it. Because of this, in you circuit, when the BJT is turned on, all of the current is flowing directly from +5.2V to GND through the BJT (basically like a short circuit), which is why the BJT is getting so hot. Since there is 0 resistance between +5.2V and GND through the BJT, none of the current is going through the LED (thus staying off). Additionally, the switch SW1 is not connected to be able to turn on the BJT, rather it is connected to provide power to everything all at once.



          I think this is closer to what you're looking for:





          schematic





          simulate this circuit – Schematic created using CircuitLab



          Note how this allows the switch SW1 to control the BJT via its base pin, which in turn allows the BJT (which is now in series with the LED circuit) to pass current through it from 5.2V, through the D1, through R1, through Q1 and finally to GND.



          I tried to make this as similar-looking as possible to your original circuit to make it clearer what was incorrect. However, note that you'll still want to include a pull-down resistor and series-resistor on the Q1 base pin (similar to Peter Bennett's post).






          share|improve this answer











          $endgroup$








          • 3




            $begingroup$
            Applying 5.2 volts directly across the base/emitter junction will kill the transistor. You need a 1K or more resistor between the switch and the transistor base, and possibly a pull-down resistor to ensure the transistor turns off when the switch is open.
            $endgroup$
            – Peter Bennett
            2 hours ago










          • $begingroup$
            Thanks, I edited the post to make that clarification
            $endgroup$
            – mith
            2 hours ago











          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("schematics", function ()
          StackExchange.schematics.init();
          );
          , "cicuitlab");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "135"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2felectronics.stackexchange.com%2fquestions%2f429894%2fis-it-possible-to-use-a-npn-bjt-as-switch-from-single-power-source%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          2












          $begingroup$

          When you close the switch, you are applying 5.2 volts across the base/emitter junction, which normally doesn't like more than 0.7 volts - this will destroy the transistor.



          One way to use a switch and transistor to contol an LED is:





          schematic





          simulate this circuit – Schematic created using CircuitLab



          R2 will limit the base current when thet switch is closed. R3 pulls the base low when the switch is open, to ensure the transistor is not conducting.



          Pressing the switch will provide base current through R2, allowing the transistor to conduct, drawing current through the LED and R1. R1 limits the LED current to a safe value.






          share|improve this answer









          $endgroup$












          • $begingroup$
            Fantastic! Thanks very much for explaining that so clearly. I will try it out and mark this as answer later today or tomorrow.
            $endgroup$
            – raddevus
            2 hours ago















          2












          $begingroup$

          When you close the switch, you are applying 5.2 volts across the base/emitter junction, which normally doesn't like more than 0.7 volts - this will destroy the transistor.



          One way to use a switch and transistor to contol an LED is:





          schematic





          simulate this circuit – Schematic created using CircuitLab



          R2 will limit the base current when thet switch is closed. R3 pulls the base low when the switch is open, to ensure the transistor is not conducting.



          Pressing the switch will provide base current through R2, allowing the transistor to conduct, drawing current through the LED and R1. R1 limits the LED current to a safe value.






          share|improve this answer









          $endgroup$












          • $begingroup$
            Fantastic! Thanks very much for explaining that so clearly. I will try it out and mark this as answer later today or tomorrow.
            $endgroup$
            – raddevus
            2 hours ago













          2












          2








          2





          $begingroup$

          When you close the switch, you are applying 5.2 volts across the base/emitter junction, which normally doesn't like more than 0.7 volts - this will destroy the transistor.



          One way to use a switch and transistor to contol an LED is:





          schematic





          simulate this circuit – Schematic created using CircuitLab



          R2 will limit the base current when thet switch is closed. R3 pulls the base low when the switch is open, to ensure the transistor is not conducting.



          Pressing the switch will provide base current through R2, allowing the transistor to conduct, drawing current through the LED and R1. R1 limits the LED current to a safe value.






          share|improve this answer









          $endgroup$



          When you close the switch, you are applying 5.2 volts across the base/emitter junction, which normally doesn't like more than 0.7 volts - this will destroy the transistor.



          One way to use a switch and transistor to contol an LED is:





          schematic





          simulate this circuit – Schematic created using CircuitLab



          R2 will limit the base current when thet switch is closed. R3 pulls the base low when the switch is open, to ensure the transistor is not conducting.



          Pressing the switch will provide base current through R2, allowing the transistor to conduct, drawing current through the LED and R1. R1 limits the LED current to a safe value.







          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered 2 hours ago









          Peter BennettPeter Bennett

          37.9k13068




          37.9k13068











          • $begingroup$
            Fantastic! Thanks very much for explaining that so clearly. I will try it out and mark this as answer later today or tomorrow.
            $endgroup$
            – raddevus
            2 hours ago
















          • $begingroup$
            Fantastic! Thanks very much for explaining that so clearly. I will try it out and mark this as answer later today or tomorrow.
            $endgroup$
            – raddevus
            2 hours ago















          $begingroup$
          Fantastic! Thanks very much for explaining that so clearly. I will try it out and mark this as answer later today or tomorrow.
          $endgroup$
          – raddevus
          2 hours ago




          $begingroup$
          Fantastic! Thanks very much for explaining that so clearly. I will try it out and mark this as answer later today or tomorrow.
          $endgroup$
          – raddevus
          2 hours ago













          0












          $begingroup$

          Your circuit is not designed correctly for what you're trying to do. You currently have the BJT connected in parallel with the LED ciruit, instead of being in series with it. Because of this, in you circuit, when the BJT is turned on, all of the current is flowing directly from +5.2V to GND through the BJT (basically like a short circuit), which is why the BJT is getting so hot. Since there is 0 resistance between +5.2V and GND through the BJT, none of the current is going through the LED (thus staying off). Additionally, the switch SW1 is not connected to be able to turn on the BJT, rather it is connected to provide power to everything all at once.



          I think this is closer to what you're looking for:





          schematic





          simulate this circuit – Schematic created using CircuitLab



          Note how this allows the switch SW1 to control the BJT via its base pin, which in turn allows the BJT (which is now in series with the LED circuit) to pass current through it from 5.2V, through the D1, through R1, through Q1 and finally to GND.



          I tried to make this as similar-looking as possible to your original circuit to make it clearer what was incorrect. However, note that you'll still want to include a pull-down resistor and series-resistor on the Q1 base pin (similar to Peter Bennett's post).






          share|improve this answer











          $endgroup$








          • 3




            $begingroup$
            Applying 5.2 volts directly across the base/emitter junction will kill the transistor. You need a 1K or more resistor between the switch and the transistor base, and possibly a pull-down resistor to ensure the transistor turns off when the switch is open.
            $endgroup$
            – Peter Bennett
            2 hours ago










          • $begingroup$
            Thanks, I edited the post to make that clarification
            $endgroup$
            – mith
            2 hours ago















          0












          $begingroup$

          Your circuit is not designed correctly for what you're trying to do. You currently have the BJT connected in parallel with the LED ciruit, instead of being in series with it. Because of this, in you circuit, when the BJT is turned on, all of the current is flowing directly from +5.2V to GND through the BJT (basically like a short circuit), which is why the BJT is getting so hot. Since there is 0 resistance between +5.2V and GND through the BJT, none of the current is going through the LED (thus staying off). Additionally, the switch SW1 is not connected to be able to turn on the BJT, rather it is connected to provide power to everything all at once.



          I think this is closer to what you're looking for:





          schematic





          simulate this circuit – Schematic created using CircuitLab



          Note how this allows the switch SW1 to control the BJT via its base pin, which in turn allows the BJT (which is now in series with the LED circuit) to pass current through it from 5.2V, through the D1, through R1, through Q1 and finally to GND.



          I tried to make this as similar-looking as possible to your original circuit to make it clearer what was incorrect. However, note that you'll still want to include a pull-down resistor and series-resistor on the Q1 base pin (similar to Peter Bennett's post).






          share|improve this answer











          $endgroup$








          • 3




            $begingroup$
            Applying 5.2 volts directly across the base/emitter junction will kill the transistor. You need a 1K or more resistor between the switch and the transistor base, and possibly a pull-down resistor to ensure the transistor turns off when the switch is open.
            $endgroup$
            – Peter Bennett
            2 hours ago










          • $begingroup$
            Thanks, I edited the post to make that clarification
            $endgroup$
            – mith
            2 hours ago













          0












          0








          0





          $begingroup$

          Your circuit is not designed correctly for what you're trying to do. You currently have the BJT connected in parallel with the LED ciruit, instead of being in series with it. Because of this, in you circuit, when the BJT is turned on, all of the current is flowing directly from +5.2V to GND through the BJT (basically like a short circuit), which is why the BJT is getting so hot. Since there is 0 resistance between +5.2V and GND through the BJT, none of the current is going through the LED (thus staying off). Additionally, the switch SW1 is not connected to be able to turn on the BJT, rather it is connected to provide power to everything all at once.



          I think this is closer to what you're looking for:





          schematic





          simulate this circuit – Schematic created using CircuitLab



          Note how this allows the switch SW1 to control the BJT via its base pin, which in turn allows the BJT (which is now in series with the LED circuit) to pass current through it from 5.2V, through the D1, through R1, through Q1 and finally to GND.



          I tried to make this as similar-looking as possible to your original circuit to make it clearer what was incorrect. However, note that you'll still want to include a pull-down resistor and series-resistor on the Q1 base pin (similar to Peter Bennett's post).






          share|improve this answer











          $endgroup$



          Your circuit is not designed correctly for what you're trying to do. You currently have the BJT connected in parallel with the LED ciruit, instead of being in series with it. Because of this, in you circuit, when the BJT is turned on, all of the current is flowing directly from +5.2V to GND through the BJT (basically like a short circuit), which is why the BJT is getting so hot. Since there is 0 resistance between +5.2V and GND through the BJT, none of the current is going through the LED (thus staying off). Additionally, the switch SW1 is not connected to be able to turn on the BJT, rather it is connected to provide power to everything all at once.



          I think this is closer to what you're looking for:





          schematic





          simulate this circuit – Schematic created using CircuitLab



          Note how this allows the switch SW1 to control the BJT via its base pin, which in turn allows the BJT (which is now in series with the LED circuit) to pass current through it from 5.2V, through the D1, through R1, through Q1 and finally to GND.



          I tried to make this as similar-looking as possible to your original circuit to make it clearer what was incorrect. However, note that you'll still want to include a pull-down resistor and series-resistor on the Q1 base pin (similar to Peter Bennett's post).







          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited 2 hours ago

























          answered 2 hours ago









          mithmith

          25915




          25915







          • 3




            $begingroup$
            Applying 5.2 volts directly across the base/emitter junction will kill the transistor. You need a 1K or more resistor between the switch and the transistor base, and possibly a pull-down resistor to ensure the transistor turns off when the switch is open.
            $endgroup$
            – Peter Bennett
            2 hours ago










          • $begingroup$
            Thanks, I edited the post to make that clarification
            $endgroup$
            – mith
            2 hours ago












          • 3




            $begingroup$
            Applying 5.2 volts directly across the base/emitter junction will kill the transistor. You need a 1K or more resistor between the switch and the transistor base, and possibly a pull-down resistor to ensure the transistor turns off when the switch is open.
            $endgroup$
            – Peter Bennett
            2 hours ago










          • $begingroup$
            Thanks, I edited the post to make that clarification
            $endgroup$
            – mith
            2 hours ago







          3




          3




          $begingroup$
          Applying 5.2 volts directly across the base/emitter junction will kill the transistor. You need a 1K or more resistor between the switch and the transistor base, and possibly a pull-down resistor to ensure the transistor turns off when the switch is open.
          $endgroup$
          – Peter Bennett
          2 hours ago




          $begingroup$
          Applying 5.2 volts directly across the base/emitter junction will kill the transistor. You need a 1K or more resistor between the switch and the transistor base, and possibly a pull-down resistor to ensure the transistor turns off when the switch is open.
          $endgroup$
          – Peter Bennett
          2 hours ago












          $begingroup$
          Thanks, I edited the post to make that clarification
          $endgroup$
          – mith
          2 hours ago




          $begingroup$
          Thanks, I edited the post to make that clarification
          $endgroup$
          – mith
          2 hours ago

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Electrical Engineering Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2felectronics.stackexchange.com%2fquestions%2f429894%2fis-it-possible-to-use-a-npn-bjt-as-switch-from-single-power-source%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Reverse int within the 32-bit signed integer range: [−2^31, 2^31 − 1]Combining two 32-bit integers into one 64-bit integerDetermine if an int is within rangeLossy packing 32 bit integer to 16 bitComputing the square root of a 64-bit integerKeeping integer addition within boundsSafe multiplication of two 64-bit signed integersLeetcode 10: Regular Expression MatchingSigned integer-to-ascii x86_64 assembler macroReverse the digits of an Integer“Add two numbers given in reverse order from a linked list”

          Category:Fedor von Bock Media in category "Fedor von Bock"Navigation menuUpload mediaISNI: 0000 0000 5511 3417VIAF ID: 24712551GND ID: 119294796Library of Congress authority ID: n96068363BnF ID: 12534305fSUDOC authorities ID: 034604189Open Library ID: OL338253ANKCR AUT ID: jn19990000869National Library of Israel ID: 000514068National Thesaurus for Author Names ID: 341574317ReasonatorScholiaStatistics

          Kiel Indholdsfortegnelse Historie | Transport og færgeforbindelser | Sejlsport og anden sport | Kultur | Kendte personer fra Kiel | Noter | Litteratur | Eksterne henvisninger | Navigationsmenuwww.kiel.de54°19′31″N 10°8′26″Ø / 54.32528°N 10.14056°Ø / 54.32528; 10.14056Oberbürgermeister Dr. Ulf Kämpferwww.statistik-nord.deDen danske Stats StatistikKiels hjemmesiderrrWorldCat312794080n790547494030481-4