Show that if two triangles built on parallel lines, with equal bases have the same perimeter only if they are congruent.Prove that lines intersecting parallel similar triangles are concurrentDoes proving that two lines are parallel require a postulate?proving that $BC' parallel B'C$Without using angle measure how do I prove two lines are parallel to the same line are parallel to each other?Two congruent segments does have the same length?Two triangles cirumcribed a conic problemShow that two parallel lines have the same direction vector from a different definition of parallel lines.Proof: Two triangles have the same ratio of length for each corresponding side then they are similarIf the heights of two triangles are proportional then prove that they are similiarIf ratio of sides of two triangles is constant then the triangles have the same angles
What typically incentivizes a professor to change jobs to a lower ranking university?
Accidentally leaked the solution to an assignment, what to do now? (I'm the prof)
Is it unprofessional to ask if a job posting on GlassDoor is real?
Are the number of citations and number of published articles the most important criteria for a tenure promotion?
Arthur Somervell: 1000 Exercises - Meaning of this notation
Show that if two triangles built on parallel lines, with equal bases have the same perimeter only if they are congruent.
Problem of parity - Can we draw a closed path made up of 20 line segments...
Do VLANs within a subnet need to have their own subnet for router on a stick?
If I cast Expeditious Retreat, can I Dash as a bonus action on the same turn?
can i play a electric guitar through a bass amp?
What defenses are there against being summoned by the Gate spell?
How old can references or sources in a thesis be?
How to write a macro that is braces sensitive?
How to say job offer in Mandarin/Cantonese?
Can a Warlock become Neutral Good?
What do you call a Matrix-like slowdown and camera movement effect?
Prove that NP is closed under karp reduction?
Why "Having chlorophyll without photosynthesis is actually very dangerous" and "like living with a bomb"?
What does "Puller Prush Person" mean?
Why don't electron-positron collisions release infinite energy?
Test if tikzmark exists on same page
Theorems that impeded progress
How is it possible to have an ability score that is less than 3?
Fencing style for blades that can attack from a distance
Show that if two triangles built on parallel lines, with equal bases have the same perimeter only if they are congruent.
Prove that lines intersecting parallel similar triangles are concurrentDoes proving that two lines are parallel require a postulate?proving that $BC' parallel B'C$Without using angle measure how do I prove two lines are parallel to the same line are parallel to each other?Two congruent segments does have the same length?Two triangles cirumcribed a conic problemShow that two parallel lines have the same direction vector from a different definition of parallel lines.Proof: Two triangles have the same ratio of length for each corresponding side then they are similarIf the heights of two triangles are proportional then prove that they are similiarIf ratio of sides of two triangles is constant then the triangles have the same angles
$begingroup$
Show that if two triangles built on parallel lines, as shown above, with |AB|=|A'B'| have the same perimeter only if they are congruent.
I've tried proving by contradiction:
Suppose they are not congruent but have the same perimeter, then either
|AC|$neq$|A'C| or |BC|$neq$ |B'C'|.
Let's say |AC|$neq$|A'C'|, and suppose that |AC| $lt$ |A'C'|.
If |BC|=|B'C'| then the triangles would be congruent which is false from my assumption.
If |BC| $gt$ |B'C'| then |A'C'| + |B'C'| $gt$ |AC| + |BC| which is false because their perimeters should be equal.
On the last possible case, |BC|$gt$|B'C'| I got stuck. I can't find a way to show that it is false.
How can I show that the last case is false?
geometry euclidean-geometry
$endgroup$
add a comment |
$begingroup$
Show that if two triangles built on parallel lines, as shown above, with |AB|=|A'B'| have the same perimeter only if they are congruent.
I've tried proving by contradiction:
Suppose they are not congruent but have the same perimeter, then either
|AC|$neq$|A'C| or |BC|$neq$ |B'C'|.
Let's say |AC|$neq$|A'C'|, and suppose that |AC| $lt$ |A'C'|.
If |BC|=|B'C'| then the triangles would be congruent which is false from my assumption.
If |BC| $gt$ |B'C'| then |A'C'| + |B'C'| $gt$ |AC| + |BC| which is false because their perimeters should be equal.
On the last possible case, |BC|$gt$|B'C'| I got stuck. I can't find a way to show that it is false.
How can I show that the last case is false?
geometry euclidean-geometry
$endgroup$
$begingroup$
But you have gone to the case AC<A'C', so from BC=B'C' you don't get congruent.
$endgroup$
– coffeemath
11 hours ago
$begingroup$
Yeah, sorry. Let's just say that |A'C'| + |B'C'| > |AC| + |BC| for that one too, which is false.
$endgroup$
– Ban
10 hours ago
add a comment |
$begingroup$
Show that if two triangles built on parallel lines, as shown above, with |AB|=|A'B'| have the same perimeter only if they are congruent.
I've tried proving by contradiction:
Suppose they are not congruent but have the same perimeter, then either
|AC|$neq$|A'C| or |BC|$neq$ |B'C'|.
Let's say |AC|$neq$|A'C'|, and suppose that |AC| $lt$ |A'C'|.
If |BC|=|B'C'| then the triangles would be congruent which is false from my assumption.
If |BC| $gt$ |B'C'| then |A'C'| + |B'C'| $gt$ |AC| + |BC| which is false because their perimeters should be equal.
On the last possible case, |BC|$gt$|B'C'| I got stuck. I can't find a way to show that it is false.
How can I show that the last case is false?
geometry euclidean-geometry
$endgroup$
Show that if two triangles built on parallel lines, as shown above, with |AB|=|A'B'| have the same perimeter only if they are congruent.
I've tried proving by contradiction:
Suppose they are not congruent but have the same perimeter, then either
|AC|$neq$|A'C| or |BC|$neq$ |B'C'|.
Let's say |AC|$neq$|A'C'|, and suppose that |AC| $lt$ |A'C'|.
If |BC|=|B'C'| then the triangles would be congruent which is false from my assumption.
If |BC| $gt$ |B'C'| then |A'C'| + |B'C'| $gt$ |AC| + |BC| which is false because their perimeters should be equal.
On the last possible case, |BC|$gt$|B'C'| I got stuck. I can't find a way to show that it is false.
How can I show that the last case is false?
geometry euclidean-geometry
geometry euclidean-geometry
asked 12 hours ago
BanBan
653
653
$begingroup$
But you have gone to the case AC<A'C', so from BC=B'C' you don't get congruent.
$endgroup$
– coffeemath
11 hours ago
$begingroup$
Yeah, sorry. Let's just say that |A'C'| + |B'C'| > |AC| + |BC| for that one too, which is false.
$endgroup$
– Ban
10 hours ago
add a comment |
$begingroup$
But you have gone to the case AC<A'C', so from BC=B'C' you don't get congruent.
$endgroup$
– coffeemath
11 hours ago
$begingroup$
Yeah, sorry. Let's just say that |A'C'| + |B'C'| > |AC| + |BC| for that one too, which is false.
$endgroup$
– Ban
10 hours ago
$begingroup$
But you have gone to the case AC<A'C', so from BC=B'C' you don't get congruent.
$endgroup$
– coffeemath
11 hours ago
$begingroup$
But you have gone to the case AC<A'C', so from BC=B'C' you don't get congruent.
$endgroup$
– coffeemath
11 hours ago
$begingroup$
Yeah, sorry. Let's just say that |A'C'| + |B'C'| > |AC| + |BC| for that one too, which is false.
$endgroup$
– Ban
10 hours ago
$begingroup$
Yeah, sorry. Let's just say that |A'C'| + |B'C'| > |AC| + |BC| for that one too, which is false.
$endgroup$
– Ban
10 hours ago
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Fix $ A' $ and $ B' $. As $ AB = A'B' $ is fixed, the points $ C' $ for which $ ABC $ has the same perimeter as $ A'B'C' $ are the points for which $ AC + BC = A'C' + B'C' $. You recognize here the definition of an ellipse of focus $ A' $ and $ B' $. Hence the locus of $ C' $ is an ellipse.
Finally, $ C' $ is in the meantime on an ellipse and on a line. These two have two intersections which give the directly and indirectly congruents triangles.
The easiest way to uncover your last case is using the ellipse argument.
$endgroup$
add a comment |
$begingroup$
Imagine that $AB$ is fixed on the bottom line and $C$ varies from way off left to way off right. The perimeter of the triangle is a decreasing function until triangle $ABC$ is isosceles, then increasing. It's clear from the symmetry that it takes on every value greater than its minimum value at just two points symmetrical with respect to the perpendicular bisector of $AB$.
$endgroup$
add a comment |
$begingroup$
As an alternative proof, because the triangles are built on parallel lines, they have the same area. Using Heron's Formula
$$
A = frac14sqrt(AB + AC + BC)(-AB + AC + BC)(AB - AC + BC)(AB + AC - BC)
$$
and a bit of algebra, you can show that either $AC = A'C'$ and $BC = B'C'$ or $AC = B'C'$ and $BC = A'C'$. In both cases $ABC cong A'B'C'$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3177306%2fshow-that-if-two-triangles-built-on-parallel-lines-with-equal-bases-have-the-sa%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Fix $ A' $ and $ B' $. As $ AB = A'B' $ is fixed, the points $ C' $ for which $ ABC $ has the same perimeter as $ A'B'C' $ are the points for which $ AC + BC = A'C' + B'C' $. You recognize here the definition of an ellipse of focus $ A' $ and $ B' $. Hence the locus of $ C' $ is an ellipse.
Finally, $ C' $ is in the meantime on an ellipse and on a line. These two have two intersections which give the directly and indirectly congruents triangles.
The easiest way to uncover your last case is using the ellipse argument.
$endgroup$
add a comment |
$begingroup$
Fix $ A' $ and $ B' $. As $ AB = A'B' $ is fixed, the points $ C' $ for which $ ABC $ has the same perimeter as $ A'B'C' $ are the points for which $ AC + BC = A'C' + B'C' $. You recognize here the definition of an ellipse of focus $ A' $ and $ B' $. Hence the locus of $ C' $ is an ellipse.
Finally, $ C' $ is in the meantime on an ellipse and on a line. These two have two intersections which give the directly and indirectly congruents triangles.
The easiest way to uncover your last case is using the ellipse argument.
$endgroup$
add a comment |
$begingroup$
Fix $ A' $ and $ B' $. As $ AB = A'B' $ is fixed, the points $ C' $ for which $ ABC $ has the same perimeter as $ A'B'C' $ are the points for which $ AC + BC = A'C' + B'C' $. You recognize here the definition of an ellipse of focus $ A' $ and $ B' $. Hence the locus of $ C' $ is an ellipse.
Finally, $ C' $ is in the meantime on an ellipse and on a line. These two have two intersections which give the directly and indirectly congruents triangles.
The easiest way to uncover your last case is using the ellipse argument.
$endgroup$
Fix $ A' $ and $ B' $. As $ AB = A'B' $ is fixed, the points $ C' $ for which $ ABC $ has the same perimeter as $ A'B'C' $ are the points for which $ AC + BC = A'C' + B'C' $. You recognize here the definition of an ellipse of focus $ A' $ and $ B' $. Hence the locus of $ C' $ is an ellipse.
Finally, $ C' $ is in the meantime on an ellipse and on a line. These two have two intersections which give the directly and indirectly congruents triangles.
The easiest way to uncover your last case is using the ellipse argument.
answered 11 hours ago
AstaulpheAstaulphe
665
665
add a comment |
add a comment |
$begingroup$
Imagine that $AB$ is fixed on the bottom line and $C$ varies from way off left to way off right. The perimeter of the triangle is a decreasing function until triangle $ABC$ is isosceles, then increasing. It's clear from the symmetry that it takes on every value greater than its minimum value at just two points symmetrical with respect to the perpendicular bisector of $AB$.
$endgroup$
add a comment |
$begingroup$
Imagine that $AB$ is fixed on the bottom line and $C$ varies from way off left to way off right. The perimeter of the triangle is a decreasing function until triangle $ABC$ is isosceles, then increasing. It's clear from the symmetry that it takes on every value greater than its minimum value at just two points symmetrical with respect to the perpendicular bisector of $AB$.
$endgroup$
add a comment |
$begingroup$
Imagine that $AB$ is fixed on the bottom line and $C$ varies from way off left to way off right. The perimeter of the triangle is a decreasing function until triangle $ABC$ is isosceles, then increasing. It's clear from the symmetry that it takes on every value greater than its minimum value at just two points symmetrical with respect to the perpendicular bisector of $AB$.
$endgroup$
Imagine that $AB$ is fixed on the bottom line and $C$ varies from way off left to way off right. The perimeter of the triangle is a decreasing function until triangle $ABC$ is isosceles, then increasing. It's clear from the symmetry that it takes on every value greater than its minimum value at just two points symmetrical with respect to the perpendicular bisector of $AB$.
answered 11 hours ago
Ethan BolkerEthan Bolker
45.7k553120
45.7k553120
add a comment |
add a comment |
$begingroup$
As an alternative proof, because the triangles are built on parallel lines, they have the same area. Using Heron's Formula
$$
A = frac14sqrt(AB + AC + BC)(-AB + AC + BC)(AB - AC + BC)(AB + AC - BC)
$$
and a bit of algebra, you can show that either $AC = A'C'$ and $BC = B'C'$ or $AC = B'C'$ and $BC = A'C'$. In both cases $ABC cong A'B'C'$.
$endgroup$
add a comment |
$begingroup$
As an alternative proof, because the triangles are built on parallel lines, they have the same area. Using Heron's Formula
$$
A = frac14sqrt(AB + AC + BC)(-AB + AC + BC)(AB - AC + BC)(AB + AC - BC)
$$
and a bit of algebra, you can show that either $AC = A'C'$ and $BC = B'C'$ or $AC = B'C'$ and $BC = A'C'$. In both cases $ABC cong A'B'C'$.
$endgroup$
add a comment |
$begingroup$
As an alternative proof, because the triangles are built on parallel lines, they have the same area. Using Heron's Formula
$$
A = frac14sqrt(AB + AC + BC)(-AB + AC + BC)(AB - AC + BC)(AB + AC - BC)
$$
and a bit of algebra, you can show that either $AC = A'C'$ and $BC = B'C'$ or $AC = B'C'$ and $BC = A'C'$. In both cases $ABC cong A'B'C'$.
$endgroup$
As an alternative proof, because the triangles are built on parallel lines, they have the same area. Using Heron's Formula
$$
A = frac14sqrt(AB + AC + BC)(-AB + AC + BC)(AB - AC + BC)(AB + AC - BC)
$$
and a bit of algebra, you can show that either $AC = A'C'$ and $BC = B'C'$ or $AC = B'C'$ and $BC = A'C'$. In both cases $ABC cong A'B'C'$.
answered 11 hours ago
eyeballfrogeyeballfrog
7,204633
7,204633
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3177306%2fshow-that-if-two-triangles-built-on-parallel-lines-with-equal-bases-have-the-sa%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
But you have gone to the case AC<A'C', so from BC=B'C' you don't get congruent.
$endgroup$
– coffeemath
11 hours ago
$begingroup$
Yeah, sorry. Let's just say that |A'C'| + |B'C'| > |AC| + |BC| for that one too, which is false.
$endgroup$
– Ban
10 hours ago