What is the offset in a seaplane's hull?Would a roll cage plus a safety harness make a small GA aircraft accident more survivable?What is the purpose of the “Mirror-Thing” over the Mig-29 Cockpit?What is this metal plate below the door?What are the disadvantages of a twin boom aircraft?What's required for a plane certified to fly to Antarctica?What is the purpose of a small wing near the cockpit on the front of some planes?What is this pipe on the tail of this helicopter?What is this air-scoop behind the cockpit of the Polikarpov I-153 and Stearman?How can I find the optimum chord wing length for this wing?What are the hinged(?) structures in front of the F-4 Phantom's intakes?

Is it possible to do 50 km distance without any previous training?

Do I have a twin with permutated remainders?

What do you call a Matrix-like slowdown and camera movement effect?

What are the differences between the usage of 'it' and 'they'?

What's the output of a record cartridge playing an out-of-speed record

Theorems that impeded progress

Today is the Center

What does CI-V stand for?

Why are 150k or 200k jobs considered good when there are 300k+ births a month?

Is this a crack on the carbon frame?

Why dont electromagnetic waves interact with each other?

To string or not to string

How much RAM could one put in a typical 80386 setup?

Prove that NP is closed under karp reduction?

How did the USSR manage to innovate in an environment characterized by government censorship and high bureaucracy?

Can I make popcorn with any corn?

How old can references or sources in a thesis be?

Is it tax fraud for an individual to declare non-taxable revenue as taxable income? (US tax laws)

What typically incentivizes a professor to change jobs to a lower ranking university?

Have astronauts in space suits ever taken selfies? If so, how?

What would happen to a modern skyscraper if it rains micro blackholes?

Is it unprofessional to ask if a job posting on GlassDoor is real?

How do I create uniquely male characters?

LaTeX closing $ signs makes cursor jump



What is the offset in a seaplane's hull?


Would a roll cage plus a safety harness make a small GA aircraft accident more survivable?What is the purpose of the “Mirror-Thing” over the Mig-29 Cockpit?What is this metal plate below the door?What are the disadvantages of a twin boom aircraft?What's required for a plane certified to fly to Antarctica?What is the purpose of a small wing near the cockpit on the front of some planes?What is this pipe on the tail of this helicopter?What is this air-scoop behind the cockpit of the Polikarpov I-153 and Stearman?How can I find the optimum chord wing length for this wing?What are the hinged(?) structures in front of the F-4 Phantom's intakes?













15












$begingroup$


I noticed there is a little offset in a seaplane's hull (highlighted in the following picture). I suppose this is useful as it exists in all the seaplanes I know. It seems it does not help hydrodynamics neither aerodynamics. I could not find any clue by myself as I don't know this feature's name.



My question, what is its name and purpose?



Catalina (original image from https://upload.wikimedia.org/wikipedia/commons/2/20/PBY_Catalina.jpg)

(wikimedia.org)










share|improve this question











$endgroup$
















    15












    $begingroup$


    I noticed there is a little offset in a seaplane's hull (highlighted in the following picture). I suppose this is useful as it exists in all the seaplanes I know. It seems it does not help hydrodynamics neither aerodynamics. I could not find any clue by myself as I don't know this feature's name.



    My question, what is its name and purpose?



    Catalina (original image from https://upload.wikimedia.org/wikipedia/commons/2/20/PBY_Catalina.jpg)

    (wikimedia.org)










    share|improve this question











    $endgroup$














      15












      15








      15





      $begingroup$


      I noticed there is a little offset in a seaplane's hull (highlighted in the following picture). I suppose this is useful as it exists in all the seaplanes I know. It seems it does not help hydrodynamics neither aerodynamics. I could not find any clue by myself as I don't know this feature's name.



      My question, what is its name and purpose?



      Catalina (original image from https://upload.wikimedia.org/wikipedia/commons/2/20/PBY_Catalina.jpg)

      (wikimedia.org)










      share|improve this question











      $endgroup$




      I noticed there is a little offset in a seaplane's hull (highlighted in the following picture). I suppose this is useful as it exists in all the seaplanes I know. It seems it does not help hydrodynamics neither aerodynamics. I could not find any clue by myself as I don't know this feature's name.



      My question, what is its name and purpose?



      Catalina (original image from https://upload.wikimedia.org/wikipedia/commons/2/20/PBY_Catalina.jpg)

      (wikimedia.org)







      aircraft-design feature-identification fuselage seaplane






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited 17 hours ago









      ymb1

      69.8k7222371




      69.8k7222371










      asked 17 hours ago









      Manu HManu H

      5,5701058137




      5,5701058137




















          2 Answers
          2






          active

          oldest

          votes


















          18












          $begingroup$

          That's called the step. Without it, you'd have to fight against the buoyancy of the rear end of the hull when you rotate for takeoff.




          However, a seaplane float or hull must be designed to permit the seaplane to be rotated or pitched up to increase the wing's angle of attack and gain the most lift for takeoffs and landings. Thus, the underside of the float or hull has a sudden break in its longitudinal lines at the approximate point around which the seaplane rotates into the lift off attitude. This break, called a "step," also provides a means of interrupting the capillary or adhesive properties of the water.



          The water can then flow freely behind the step, resulting in minimum surface friction so the seaplane can lift out of the water. The steps are located slightly behind the airplane's centre of gravity, approximately at the point where the main wheels of a landplane are located. If the steps were located to far aft or forward of this point, it would be difficult, if not impossible, to rotate the airplane into a pitch-up attitude prior to planing (rising partly out of the water while moving at high speed) or lift off. Although steps are necessary, the sharp break along the float's or hull's underside causes structural stress concentration, and in flight produces considerable drag because of the eddying turbulence it creates in the airflow.







          share|improve this answer









          $endgroup$








          • 3




            $begingroup$
            Re the drag in flight, an obvious question would be whether anyone had a retractable fairing behind the step to solve that problem? I hit Google and found a few places speculating about that (including US patent US6042052A in 1998), but no evidence of designers actually using one.
            $endgroup$
            – Graham
            5 hours ago


















          9












          $begingroup$

          enter image description here



          It's called a hull step. Below is with and without:




          enter image description here



          It reduces water drag. As the plane gains speed and the aft body is lifted, only the forward hull will be in contact with the water.




          Source: Laté 631 Replica - Chapter 3 - Hydrodynamics






          share|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "528"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2faviation.stackexchange.com%2fquestions%2f62088%2fwhat-is-the-offset-in-a-seaplanes-hull%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            18












            $begingroup$

            That's called the step. Without it, you'd have to fight against the buoyancy of the rear end of the hull when you rotate for takeoff.




            However, a seaplane float or hull must be designed to permit the seaplane to be rotated or pitched up to increase the wing's angle of attack and gain the most lift for takeoffs and landings. Thus, the underside of the float or hull has a sudden break in its longitudinal lines at the approximate point around which the seaplane rotates into the lift off attitude. This break, called a "step," also provides a means of interrupting the capillary or adhesive properties of the water.



            The water can then flow freely behind the step, resulting in minimum surface friction so the seaplane can lift out of the water. The steps are located slightly behind the airplane's centre of gravity, approximately at the point where the main wheels of a landplane are located. If the steps were located to far aft or forward of this point, it would be difficult, if not impossible, to rotate the airplane into a pitch-up attitude prior to planing (rising partly out of the water while moving at high speed) or lift off. Although steps are necessary, the sharp break along the float's or hull's underside causes structural stress concentration, and in flight produces considerable drag because of the eddying turbulence it creates in the airflow.







            share|improve this answer









            $endgroup$








            • 3




              $begingroup$
              Re the drag in flight, an obvious question would be whether anyone had a retractable fairing behind the step to solve that problem? I hit Google and found a few places speculating about that (including US patent US6042052A in 1998), but no evidence of designers actually using one.
              $endgroup$
              – Graham
              5 hours ago















            18












            $begingroup$

            That's called the step. Without it, you'd have to fight against the buoyancy of the rear end of the hull when you rotate for takeoff.




            However, a seaplane float or hull must be designed to permit the seaplane to be rotated or pitched up to increase the wing's angle of attack and gain the most lift for takeoffs and landings. Thus, the underside of the float or hull has a sudden break in its longitudinal lines at the approximate point around which the seaplane rotates into the lift off attitude. This break, called a "step," also provides a means of interrupting the capillary or adhesive properties of the water.



            The water can then flow freely behind the step, resulting in minimum surface friction so the seaplane can lift out of the water. The steps are located slightly behind the airplane's centre of gravity, approximately at the point where the main wheels of a landplane are located. If the steps were located to far aft or forward of this point, it would be difficult, if not impossible, to rotate the airplane into a pitch-up attitude prior to planing (rising partly out of the water while moving at high speed) or lift off. Although steps are necessary, the sharp break along the float's or hull's underside causes structural stress concentration, and in flight produces considerable drag because of the eddying turbulence it creates in the airflow.







            share|improve this answer









            $endgroup$








            • 3




              $begingroup$
              Re the drag in flight, an obvious question would be whether anyone had a retractable fairing behind the step to solve that problem? I hit Google and found a few places speculating about that (including US patent US6042052A in 1998), but no evidence of designers actually using one.
              $endgroup$
              – Graham
              5 hours ago













            18












            18








            18





            $begingroup$

            That's called the step. Without it, you'd have to fight against the buoyancy of the rear end of the hull when you rotate for takeoff.




            However, a seaplane float or hull must be designed to permit the seaplane to be rotated or pitched up to increase the wing's angle of attack and gain the most lift for takeoffs and landings. Thus, the underside of the float or hull has a sudden break in its longitudinal lines at the approximate point around which the seaplane rotates into the lift off attitude. This break, called a "step," also provides a means of interrupting the capillary or adhesive properties of the water.



            The water can then flow freely behind the step, resulting in minimum surface friction so the seaplane can lift out of the water. The steps are located slightly behind the airplane's centre of gravity, approximately at the point where the main wheels of a landplane are located. If the steps were located to far aft or forward of this point, it would be difficult, if not impossible, to rotate the airplane into a pitch-up attitude prior to planing (rising partly out of the water while moving at high speed) or lift off. Although steps are necessary, the sharp break along the float's or hull's underside causes structural stress concentration, and in flight produces considerable drag because of the eddying turbulence it creates in the airflow.







            share|improve this answer









            $endgroup$



            That's called the step. Without it, you'd have to fight against the buoyancy of the rear end of the hull when you rotate for takeoff.




            However, a seaplane float or hull must be designed to permit the seaplane to be rotated or pitched up to increase the wing's angle of attack and gain the most lift for takeoffs and landings. Thus, the underside of the float or hull has a sudden break in its longitudinal lines at the approximate point around which the seaplane rotates into the lift off attitude. This break, called a "step," also provides a means of interrupting the capillary or adhesive properties of the water.



            The water can then flow freely behind the step, resulting in minimum surface friction so the seaplane can lift out of the water. The steps are located slightly behind the airplane's centre of gravity, approximately at the point where the main wheels of a landplane are located. If the steps were located to far aft or forward of this point, it would be difficult, if not impossible, to rotate the airplane into a pitch-up attitude prior to planing (rising partly out of the water while moving at high speed) or lift off. Although steps are necessary, the sharp break along the float's or hull's underside causes structural stress concentration, and in flight produces considerable drag because of the eddying turbulence it creates in the airflow.








            share|improve this answer












            share|improve this answer



            share|improve this answer










            answered 17 hours ago









            HobbesHobbes

            4,0421017




            4,0421017







            • 3




              $begingroup$
              Re the drag in flight, an obvious question would be whether anyone had a retractable fairing behind the step to solve that problem? I hit Google and found a few places speculating about that (including US patent US6042052A in 1998), but no evidence of designers actually using one.
              $endgroup$
              – Graham
              5 hours ago












            • 3




              $begingroup$
              Re the drag in flight, an obvious question would be whether anyone had a retractable fairing behind the step to solve that problem? I hit Google and found a few places speculating about that (including US patent US6042052A in 1998), but no evidence of designers actually using one.
              $endgroup$
              – Graham
              5 hours ago







            3




            3




            $begingroup$
            Re the drag in flight, an obvious question would be whether anyone had a retractable fairing behind the step to solve that problem? I hit Google and found a few places speculating about that (including US patent US6042052A in 1998), but no evidence of designers actually using one.
            $endgroup$
            – Graham
            5 hours ago




            $begingroup$
            Re the drag in flight, an obvious question would be whether anyone had a retractable fairing behind the step to solve that problem? I hit Google and found a few places speculating about that (including US patent US6042052A in 1998), but no evidence of designers actually using one.
            $endgroup$
            – Graham
            5 hours ago











            9












            $begingroup$

            enter image description here



            It's called a hull step. Below is with and without:




            enter image description here



            It reduces water drag. As the plane gains speed and the aft body is lifted, only the forward hull will be in contact with the water.




            Source: Laté 631 Replica - Chapter 3 - Hydrodynamics






            share|improve this answer









            $endgroup$

















              9












              $begingroup$

              enter image description here



              It's called a hull step. Below is with and without:




              enter image description here



              It reduces water drag. As the plane gains speed and the aft body is lifted, only the forward hull will be in contact with the water.




              Source: Laté 631 Replica - Chapter 3 - Hydrodynamics






              share|improve this answer









              $endgroup$















                9












                9








                9





                $begingroup$

                enter image description here



                It's called a hull step. Below is with and without:




                enter image description here



                It reduces water drag. As the plane gains speed and the aft body is lifted, only the forward hull will be in contact with the water.




                Source: Laté 631 Replica - Chapter 3 - Hydrodynamics






                share|improve this answer









                $endgroup$



                enter image description here



                It's called a hull step. Below is with and without:




                enter image description here



                It reduces water drag. As the plane gains speed and the aft body is lifted, only the forward hull will be in contact with the water.




                Source: Laté 631 Replica - Chapter 3 - Hydrodynamics







                share|improve this answer












                share|improve this answer



                share|improve this answer










                answered 17 hours ago









                ymb1ymb1

                69.8k7222371




                69.8k7222371



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Aviation Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2faviation.stackexchange.com%2fquestions%2f62088%2fwhat-is-the-offset-in-a-seaplanes-hull%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Reverse int within the 32-bit signed integer range: [−2^31, 2^31 − 1]Combining two 32-bit integers into one 64-bit integerDetermine if an int is within rangeLossy packing 32 bit integer to 16 bitComputing the square root of a 64-bit integerKeeping integer addition within boundsSafe multiplication of two 64-bit signed integersLeetcode 10: Regular Expression MatchingSigned integer-to-ascii x86_64 assembler macroReverse the digits of an Integer“Add two numbers given in reverse order from a linked list”

                    Category:Fedor von Bock Media in category "Fedor von Bock"Navigation menuUpload mediaISNI: 0000 0000 5511 3417VIAF ID: 24712551GND ID: 119294796Library of Congress authority ID: n96068363BnF ID: 12534305fSUDOC authorities ID: 034604189Open Library ID: OL338253ANKCR AUT ID: jn19990000869National Library of Israel ID: 000514068National Thesaurus for Author Names ID: 341574317ReasonatorScholiaStatistics

                    Kiel Indholdsfortegnelse Historie | Transport og færgeforbindelser | Sejlsport og anden sport | Kultur | Kendte personer fra Kiel | Noter | Litteratur | Eksterne henvisninger | Navigationsmenuwww.kiel.de54°19′31″N 10°8′26″Ø / 54.32528°N 10.14056°Ø / 54.32528; 10.14056Oberbürgermeister Dr. Ulf Kämpferwww.statistik-nord.deDen danske Stats StatistikKiels hjemmesiderrrWorldCat312794080n790547494030481-4