Banach space and Hilbert space topologyShowing that two Banach spaces are homeomorphic when their dimensions are equal.Is any Banach space a dual space?A Banach space that is not a Hilbert spaceIs every Hilbert space a Banach algebra?Which Hilbert space is isometrically isomorphism with $B(E)$ for some Banach space $E$.Is every Banach space densely embedded in a Hilbert space?Existence of a $mathbb C$-Banach space isometric to a Hilbert Space but whose norm is not induced by an inner product?An example of a Banach space isomorphic but not isometric to a dual Banach spaceThe Hahn-Banach Theorem for Hilbert SpaceBanach spaces and Hilbert spaceBasis of infinite dimensional Banach space and separable hilbert space

"My colleague's body is amazing"

"listening to me about as much as you're listening to this pole here"

How can I fix this gap between bookcases I made?

How is it possible for user's password to be changed after storage was encrypted? (on OS X, Android)

Does a dangling wire really electrocute me if I'm standing in water?

How to deal with fear of taking dependencies

Is this food a bread or a loaf?

How to manage monthly salary

Could Giant Ground Sloths have been a good pack animal for the ancient Mayans?

What causes the sudden spool-up sound from an F-16 when enabling afterburner?

Does bootstrapped regression allow for inference?

Crop image to path created in TikZ?

Is Social Media Science Fiction?

Is it wise to focus on putting odd beats on left when playing double bass drums?

Is there a familial term for apples and pears?

Why do we use polarized capacitors?

LWC and complex parameters

Why is the design of haulage companies so “special”?

Pristine Bit Checking

Ideas for 3rd eye abilities

How can I add custom success page

How to answer pointed "are you quitting" questioning when I don't want them to suspect

What do you call something that goes against the spirit of the law, but is legal when interpreting the law to the letter?

Could a US political party gain complete control over the government by removing checks & balances?



Banach space and Hilbert space topology


Showing that two Banach spaces are homeomorphic when their dimensions are equal.Is any Banach space a dual space?A Banach space that is not a Hilbert spaceIs every Hilbert space a Banach algebra?Which Hilbert space is isometrically isomorphism with $B(E)$ for some Banach space $E$.Is every Banach space densely embedded in a Hilbert space?Existence of a $mathbb C$-Banach space isometric to a Hilbert Space but whose norm is not induced by an inner product?An example of a Banach space isomorphic but not isometric to a dual Banach spaceThe Hahn-Banach Theorem for Hilbert SpaceBanach spaces and Hilbert spaceBasis of infinite dimensional Banach space and separable hilbert space













2












$begingroup$


Let $B$ be a Banach space. It is not necessarily true that
there exists a Hilbert space $H$ linearly isometric to $B$.



However, is it true that there exists a Hilbert space $H$
homeomorphic to $B$?










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    If $B$ is separable, then yes. All separable Banach Spaces are homeomorphic. So homeomorphic to $ell^2$
    $endgroup$
    – user124910
    yesterday






  • 1




    $begingroup$
    @user124910 We can extend this to non-separable as well. See my answer.
    $endgroup$
    – Henno Brandsma
    yesterday















2












$begingroup$


Let $B$ be a Banach space. It is not necessarily true that
there exists a Hilbert space $H$ linearly isometric to $B$.



However, is it true that there exists a Hilbert space $H$
homeomorphic to $B$?










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    If $B$ is separable, then yes. All separable Banach Spaces are homeomorphic. So homeomorphic to $ell^2$
    $endgroup$
    – user124910
    yesterday






  • 1




    $begingroup$
    @user124910 We can extend this to non-separable as well. See my answer.
    $endgroup$
    – Henno Brandsma
    yesterday













2












2








2





$begingroup$


Let $B$ be a Banach space. It is not necessarily true that
there exists a Hilbert space $H$ linearly isometric to $B$.



However, is it true that there exists a Hilbert space $H$
homeomorphic to $B$?










share|cite|improve this question











$endgroup$




Let $B$ be a Banach space. It is not necessarily true that
there exists a Hilbert space $H$ linearly isometric to $B$.



However, is it true that there exists a Hilbert space $H$
homeomorphic to $B$?







general-topology functional-analysis hilbert-spaces banach-spaces






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited yesterday









Henno Brandsma

115k349125




115k349125










asked yesterday









user156213user156213

69238




69238







  • 1




    $begingroup$
    If $B$ is separable, then yes. All separable Banach Spaces are homeomorphic. So homeomorphic to $ell^2$
    $endgroup$
    – user124910
    yesterday






  • 1




    $begingroup$
    @user124910 We can extend this to non-separable as well. See my answer.
    $endgroup$
    – Henno Brandsma
    yesterday












  • 1




    $begingroup$
    If $B$ is separable, then yes. All separable Banach Spaces are homeomorphic. So homeomorphic to $ell^2$
    $endgroup$
    – user124910
    yesterday






  • 1




    $begingroup$
    @user124910 We can extend this to non-separable as well. See my answer.
    $endgroup$
    – Henno Brandsma
    yesterday







1




1




$begingroup$
If $B$ is separable, then yes. All separable Banach Spaces are homeomorphic. So homeomorphic to $ell^2$
$endgroup$
– user124910
yesterday




$begingroup$
If $B$ is separable, then yes. All separable Banach Spaces are homeomorphic. So homeomorphic to $ell^2$
$endgroup$
– user124910
yesterday




1




1




$begingroup$
@user124910 We can extend this to non-separable as well. See my answer.
$endgroup$
– Henno Brandsma
yesterday




$begingroup$
@user124910 We can extend this to non-separable as well. See my answer.
$endgroup$
– Henno Brandsma
yesterday










1 Answer
1






active

oldest

votes


















7












$begingroup$

Yes, but this is quite a deep result. Two infinite-dimensional Banach spaces $X$ and $Y$ are homeomorphic iff $d(X)=d(Y)$, where the density $d(X)$ is the minimal size of a dense subset of $X$.



So any separable infinite-dimensional Banach space is homeomorphic to the Hilbert space $ell^2$ (and even to $mathbbR^omega$, because the result extends to locally convex completely metrisable TVS's as well). And for higher densities we have Hilbert spaces $ell_2(kappa)$ as models. Finite dimensional we only have the $mathbbR^n$ up to homeomorphism, which are already Hilbert spaces.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Do you know of a reference with the proof of this?
    $endgroup$
    – user156213
    yesterday






  • 2




    $begingroup$
    @user156213 This post has a reference.
    $endgroup$
    – David Mitra
    15 hours ago











Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3178808%2fbanach-space-and-hilbert-space-topology%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









7












$begingroup$

Yes, but this is quite a deep result. Two infinite-dimensional Banach spaces $X$ and $Y$ are homeomorphic iff $d(X)=d(Y)$, where the density $d(X)$ is the minimal size of a dense subset of $X$.



So any separable infinite-dimensional Banach space is homeomorphic to the Hilbert space $ell^2$ (and even to $mathbbR^omega$, because the result extends to locally convex completely metrisable TVS's as well). And for higher densities we have Hilbert spaces $ell_2(kappa)$ as models. Finite dimensional we only have the $mathbbR^n$ up to homeomorphism, which are already Hilbert spaces.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Do you know of a reference with the proof of this?
    $endgroup$
    – user156213
    yesterday






  • 2




    $begingroup$
    @user156213 This post has a reference.
    $endgroup$
    – David Mitra
    15 hours ago















7












$begingroup$

Yes, but this is quite a deep result. Two infinite-dimensional Banach spaces $X$ and $Y$ are homeomorphic iff $d(X)=d(Y)$, where the density $d(X)$ is the minimal size of a dense subset of $X$.



So any separable infinite-dimensional Banach space is homeomorphic to the Hilbert space $ell^2$ (and even to $mathbbR^omega$, because the result extends to locally convex completely metrisable TVS's as well). And for higher densities we have Hilbert spaces $ell_2(kappa)$ as models. Finite dimensional we only have the $mathbbR^n$ up to homeomorphism, which are already Hilbert spaces.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Do you know of a reference with the proof of this?
    $endgroup$
    – user156213
    yesterday






  • 2




    $begingroup$
    @user156213 This post has a reference.
    $endgroup$
    – David Mitra
    15 hours ago













7












7








7





$begingroup$

Yes, but this is quite a deep result. Two infinite-dimensional Banach spaces $X$ and $Y$ are homeomorphic iff $d(X)=d(Y)$, where the density $d(X)$ is the minimal size of a dense subset of $X$.



So any separable infinite-dimensional Banach space is homeomorphic to the Hilbert space $ell^2$ (and even to $mathbbR^omega$, because the result extends to locally convex completely metrisable TVS's as well). And for higher densities we have Hilbert spaces $ell_2(kappa)$ as models. Finite dimensional we only have the $mathbbR^n$ up to homeomorphism, which are already Hilbert spaces.






share|cite|improve this answer









$endgroup$



Yes, but this is quite a deep result. Two infinite-dimensional Banach spaces $X$ and $Y$ are homeomorphic iff $d(X)=d(Y)$, where the density $d(X)$ is the minimal size of a dense subset of $X$.



So any separable infinite-dimensional Banach space is homeomorphic to the Hilbert space $ell^2$ (and even to $mathbbR^omega$, because the result extends to locally convex completely metrisable TVS's as well). And for higher densities we have Hilbert spaces $ell_2(kappa)$ as models. Finite dimensional we only have the $mathbbR^n$ up to homeomorphism, which are already Hilbert spaces.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered yesterday









Henno BrandsmaHenno Brandsma

115k349125




115k349125











  • $begingroup$
    Do you know of a reference with the proof of this?
    $endgroup$
    – user156213
    yesterday






  • 2




    $begingroup$
    @user156213 This post has a reference.
    $endgroup$
    – David Mitra
    15 hours ago
















  • $begingroup$
    Do you know of a reference with the proof of this?
    $endgroup$
    – user156213
    yesterday






  • 2




    $begingroup$
    @user156213 This post has a reference.
    $endgroup$
    – David Mitra
    15 hours ago















$begingroup$
Do you know of a reference with the proof of this?
$endgroup$
– user156213
yesterday




$begingroup$
Do you know of a reference with the proof of this?
$endgroup$
– user156213
yesterday




2




2




$begingroup$
@user156213 This post has a reference.
$endgroup$
– David Mitra
15 hours ago




$begingroup$
@user156213 This post has a reference.
$endgroup$
– David Mitra
15 hours ago

















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3178808%2fbanach-space-and-hilbert-space-topology%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Reverse int within the 32-bit signed integer range: [−2^31, 2^31 − 1]Combining two 32-bit integers into one 64-bit integerDetermine if an int is within rangeLossy packing 32 bit integer to 16 bitComputing the square root of a 64-bit integerKeeping integer addition within boundsSafe multiplication of two 64-bit signed integersLeetcode 10: Regular Expression MatchingSigned integer-to-ascii x86_64 assembler macroReverse the digits of an Integer“Add two numbers given in reverse order from a linked list”

Category:Fedor von Bock Media in category "Fedor von Bock"Navigation menuUpload mediaISNI: 0000 0000 5511 3417VIAF ID: 24712551GND ID: 119294796Library of Congress authority ID: n96068363BnF ID: 12534305fSUDOC authorities ID: 034604189Open Library ID: OL338253ANKCR AUT ID: jn19990000869National Library of Israel ID: 000514068National Thesaurus for Author Names ID: 341574317ReasonatorScholiaStatistics

Kiel Indholdsfortegnelse Historie | Transport og færgeforbindelser | Sejlsport og anden sport | Kultur | Kendte personer fra Kiel | Noter | Litteratur | Eksterne henvisninger | Navigationsmenuwww.kiel.de54°19′31″N 10°8′26″Ø / 54.32528°N 10.14056°Ø / 54.32528; 10.14056Oberbürgermeister Dr. Ulf Kämpferwww.statistik-nord.deDen danske Stats StatistikKiels hjemmesiderrrWorldCat312794080n790547494030481-4