Continuity at a point in terms of closureSet Closure Union and IntersectionContinuity of a function through adherence of subsetsConvex set with empty interior is nowhere dense?Is preimage of closure equal to closure of preimage under continuous topological maps?How to show the logical equivalence of the following two definitions of continuity in a topological space?Given $A subseteq X$ in the discrete and the trivial topology, find closure of $A$Show two notions of dense are equivalentEquivalent definitions of continuity at a pointAbout continuity and clousureEquivalent definition of irreducible topological subspace.
What are the advantages and disadvantages of running one shots compared to campaigns?
I’m planning on buying a laser printer but concerned about the life cycle of toner in the machine
Could a US political party gain complete control over the government by removing checks & balances?
Why do we use polarized capacitors?
What is GPS' 19 year rollover and does it present a cybersecurity issue?
If a centaur druid Wild Shapes into a Giant Elk, do their Charge features stack?
Is domain driven design an anti-SQL pattern?
Copycat chess is back
How to deal with fear of taking dependencies
Unbreakable Formation vs. Cry of the Carnarium
Where else does the Shulchan Aruch quote an authority by name?
Does bootstrapped regression allow for inference?
Is there a familial term for apples and pears?
"listening to me about as much as you're listening to this pole here"
Prime joint compound before latex paint?
Can I legally use front facing blue light in the UK?
Does a dangling wire really electrocute me if I'm standing in water?
Email Account under attack (really) - anything I can do?
LWC and complex parameters
Domain expired, GoDaddy holds it and is asking more money
What do you call something that goes against the spirit of the law, but is legal when interpreting the law to the letter?
Is ipsum/ipsa/ipse a third person pronoun, or can it serve other functions?
Is every set a filtered colimit of finite sets?
Add an angle to a sphere
Continuity at a point in terms of closure
Set Closure Union and IntersectionContinuity of a function through adherence of subsetsConvex set with empty interior is nowhere dense?Is preimage of closure equal to closure of preimage under continuous topological maps?How to show the logical equivalence of the following two definitions of continuity in a topological space?Given $A subseteq X$ in the discrete and the trivial topology, find closure of $A$Show two notions of dense are equivalentEquivalent definitions of continuity at a pointAbout continuity and clousureEquivalent definition of irreducible topological subspace.
$begingroup$
If $X$ and $Y$ are topological spaces, for $f:Xto Y$ to be continuous at $x_0in X$ it is necessary that $Asubseteq X land x_0inoverlineA implies f(x_0)inoverlinef(A)$.
I was wondering whether it is also sufficient. A proof or counterexample would be much appreciated!
Proof (necessity): Let $V$ be a neighborhood of $f(x_0)$. Since $f$ is continuous, $f^-1(V)$ is a neighborhood of $x_0$ in $X$. Since $x_0inoverlineA$, we have $Acap f^-1(V)neqvarnothing$. Let $xin Acap f^-1(V)$. Then $f(x)in f(A)cap V$, so that $f(A)cap Vneqvarnothing$; since this holds for any neighborhood $V$ of $f(x_0)$, we have $f(x_0)inoverlinef(A)$.
general-topology continuity
$endgroup$
add a comment |
$begingroup$
If $X$ and $Y$ are topological spaces, for $f:Xto Y$ to be continuous at $x_0in X$ it is necessary that $Asubseteq X land x_0inoverlineA implies f(x_0)inoverlinef(A)$.
I was wondering whether it is also sufficient. A proof or counterexample would be much appreciated!
Proof (necessity): Let $V$ be a neighborhood of $f(x_0)$. Since $f$ is continuous, $f^-1(V)$ is a neighborhood of $x_0$ in $X$. Since $x_0inoverlineA$, we have $Acap f^-1(V)neqvarnothing$. Let $xin Acap f^-1(V)$. Then $f(x)in f(A)cap V$, so that $f(A)cap Vneqvarnothing$; since this holds for any neighborhood $V$ of $f(x_0)$, we have $f(x_0)inoverlinef(A)$.
general-topology continuity
$endgroup$
add a comment |
$begingroup$
If $X$ and $Y$ are topological spaces, for $f:Xto Y$ to be continuous at $x_0in X$ it is necessary that $Asubseteq X land x_0inoverlineA implies f(x_0)inoverlinef(A)$.
I was wondering whether it is also sufficient. A proof or counterexample would be much appreciated!
Proof (necessity): Let $V$ be a neighborhood of $f(x_0)$. Since $f$ is continuous, $f^-1(V)$ is a neighborhood of $x_0$ in $X$. Since $x_0inoverlineA$, we have $Acap f^-1(V)neqvarnothing$. Let $xin Acap f^-1(V)$. Then $f(x)in f(A)cap V$, so that $f(A)cap Vneqvarnothing$; since this holds for any neighborhood $V$ of $f(x_0)$, we have $f(x_0)inoverlinef(A)$.
general-topology continuity
$endgroup$
If $X$ and $Y$ are topological spaces, for $f:Xto Y$ to be continuous at $x_0in X$ it is necessary that $Asubseteq X land x_0inoverlineA implies f(x_0)inoverlinef(A)$.
I was wondering whether it is also sufficient. A proof or counterexample would be much appreciated!
Proof (necessity): Let $V$ be a neighborhood of $f(x_0)$. Since $f$ is continuous, $f^-1(V)$ is a neighborhood of $x_0$ in $X$. Since $x_0inoverlineA$, we have $Acap f^-1(V)neqvarnothing$. Let $xin Acap f^-1(V)$. Then $f(x)in f(A)cap V$, so that $f(A)cap Vneqvarnothing$; since this holds for any neighborhood $V$ of $f(x_0)$, we have $f(x_0)inoverlinef(A)$.
general-topology continuity
general-topology continuity
asked yesterday
BlondCaféBlondCafé
364
364
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Let $Vsubset Y$ be an open such that $f(x_0)in V$. If $x_0 in overlinef^-1(Ysetminus V)$, then $f(x_o)in overlinef(f^-1(Ysetminus V))subset overlineYsetminus V= Ysetminus V$, a contradiction, so $x_0 notin overlinef^-1(Ysetminus V)$. Then, if $U = Xsetminus overlinef^-1(Ysetminus V)$ is an open in $X$ such that $x_0in U$, and $f(U)subset V$, so $f$ is continuous in $x_0$.
$endgroup$
add a comment |
$begingroup$
It's also sufficient: let $y=f(x_0)$ and $y in V$, $V$ open in $Y$.
We want to find (for continuity at $x_0$) find some open neighbourhood $U$ of $x_0$ such that $f[U] subseteq V$.
Suppose that this would fail, then for every neighbourhood $U$ of $x_0$ we would have $f[U] nsubseteq V$, or equivalently $U cap f^-1[Ysetminus V] neq emptyset$.
It follows that then $x_0 in overlinef^-1[Ysetminus V]$ and so the assumption on $f$ would imply that $y=f(x_0) in overlinef[f^-1[Ysetminus V]]$. But $f[f^-1[B]] subseteq B$ for any $B$ so we'd deduce that $y in overlineYsetminus V = Ysetminus V$ which is nonsense. So contradiction and such a $U$ must exist.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3178435%2fcontinuity-at-a-point-in-terms-of-closure%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $Vsubset Y$ be an open such that $f(x_0)in V$. If $x_0 in overlinef^-1(Ysetminus V)$, then $f(x_o)in overlinef(f^-1(Ysetminus V))subset overlineYsetminus V= Ysetminus V$, a contradiction, so $x_0 notin overlinef^-1(Ysetminus V)$. Then, if $U = Xsetminus overlinef^-1(Ysetminus V)$ is an open in $X$ such that $x_0in U$, and $f(U)subset V$, so $f$ is continuous in $x_0$.
$endgroup$
add a comment |
$begingroup$
Let $Vsubset Y$ be an open such that $f(x_0)in V$. If $x_0 in overlinef^-1(Ysetminus V)$, then $f(x_o)in overlinef(f^-1(Ysetminus V))subset overlineYsetminus V= Ysetminus V$, a contradiction, so $x_0 notin overlinef^-1(Ysetminus V)$. Then, if $U = Xsetminus overlinef^-1(Ysetminus V)$ is an open in $X$ such that $x_0in U$, and $f(U)subset V$, so $f$ is continuous in $x_0$.
$endgroup$
add a comment |
$begingroup$
Let $Vsubset Y$ be an open such that $f(x_0)in V$. If $x_0 in overlinef^-1(Ysetminus V)$, then $f(x_o)in overlinef(f^-1(Ysetminus V))subset overlineYsetminus V= Ysetminus V$, a contradiction, so $x_0 notin overlinef^-1(Ysetminus V)$. Then, if $U = Xsetminus overlinef^-1(Ysetminus V)$ is an open in $X$ such that $x_0in U$, and $f(U)subset V$, so $f$ is continuous in $x_0$.
$endgroup$
Let $Vsubset Y$ be an open such that $f(x_0)in V$. If $x_0 in overlinef^-1(Ysetminus V)$, then $f(x_o)in overlinef(f^-1(Ysetminus V))subset overlineYsetminus V= Ysetminus V$, a contradiction, so $x_0 notin overlinef^-1(Ysetminus V)$. Then, if $U = Xsetminus overlinef^-1(Ysetminus V)$ is an open in $X$ such that $x_0in U$, and $f(U)subset V$, so $f$ is continuous in $x_0$.
answered yesterday
guchiheguchihe
21918
21918
add a comment |
add a comment |
$begingroup$
It's also sufficient: let $y=f(x_0)$ and $y in V$, $V$ open in $Y$.
We want to find (for continuity at $x_0$) find some open neighbourhood $U$ of $x_0$ such that $f[U] subseteq V$.
Suppose that this would fail, then for every neighbourhood $U$ of $x_0$ we would have $f[U] nsubseteq V$, or equivalently $U cap f^-1[Ysetminus V] neq emptyset$.
It follows that then $x_0 in overlinef^-1[Ysetminus V]$ and so the assumption on $f$ would imply that $y=f(x_0) in overlinef[f^-1[Ysetminus V]]$. But $f[f^-1[B]] subseteq B$ for any $B$ so we'd deduce that $y in overlineYsetminus V = Ysetminus V$ which is nonsense. So contradiction and such a $U$ must exist.
$endgroup$
add a comment |
$begingroup$
It's also sufficient: let $y=f(x_0)$ and $y in V$, $V$ open in $Y$.
We want to find (for continuity at $x_0$) find some open neighbourhood $U$ of $x_0$ such that $f[U] subseteq V$.
Suppose that this would fail, then for every neighbourhood $U$ of $x_0$ we would have $f[U] nsubseteq V$, or equivalently $U cap f^-1[Ysetminus V] neq emptyset$.
It follows that then $x_0 in overlinef^-1[Ysetminus V]$ and so the assumption on $f$ would imply that $y=f(x_0) in overlinef[f^-1[Ysetminus V]]$. But $f[f^-1[B]] subseteq B$ for any $B$ so we'd deduce that $y in overlineYsetminus V = Ysetminus V$ which is nonsense. So contradiction and such a $U$ must exist.
$endgroup$
add a comment |
$begingroup$
It's also sufficient: let $y=f(x_0)$ and $y in V$, $V$ open in $Y$.
We want to find (for continuity at $x_0$) find some open neighbourhood $U$ of $x_0$ such that $f[U] subseteq V$.
Suppose that this would fail, then for every neighbourhood $U$ of $x_0$ we would have $f[U] nsubseteq V$, or equivalently $U cap f^-1[Ysetminus V] neq emptyset$.
It follows that then $x_0 in overlinef^-1[Ysetminus V]$ and so the assumption on $f$ would imply that $y=f(x_0) in overlinef[f^-1[Ysetminus V]]$. But $f[f^-1[B]] subseteq B$ for any $B$ so we'd deduce that $y in overlineYsetminus V = Ysetminus V$ which is nonsense. So contradiction and such a $U$ must exist.
$endgroup$
It's also sufficient: let $y=f(x_0)$ and $y in V$, $V$ open in $Y$.
We want to find (for continuity at $x_0$) find some open neighbourhood $U$ of $x_0$ such that $f[U] subseteq V$.
Suppose that this would fail, then for every neighbourhood $U$ of $x_0$ we would have $f[U] nsubseteq V$, or equivalently $U cap f^-1[Ysetminus V] neq emptyset$.
It follows that then $x_0 in overlinef^-1[Ysetminus V]$ and so the assumption on $f$ would imply that $y=f(x_0) in overlinef[f^-1[Ysetminus V]]$. But $f[f^-1[B]] subseteq B$ for any $B$ so we'd deduce that $y in overlineYsetminus V = Ysetminus V$ which is nonsense. So contradiction and such a $U$ must exist.
answered yesterday
Henno BrandsmaHenno Brandsma
115k349125
115k349125
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3178435%2fcontinuity-at-a-point-in-terms-of-closure%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown