Continuity at a point in terms of closureSet Closure Union and IntersectionContinuity of a function through adherence of subsetsConvex set with empty interior is nowhere dense?Is preimage of closure equal to closure of preimage under continuous topological maps?How to show the logical equivalence of the following two definitions of continuity in a topological space?Given $A subseteq X$ in the discrete and the trivial topology, find closure of $A$Show two notions of dense are equivalentEquivalent definitions of continuity at a pointAbout continuity and clousureEquivalent definition of irreducible topological subspace.

What are the advantages and disadvantages of running one shots compared to campaigns?

I’m planning on buying a laser printer but concerned about the life cycle of toner in the machine

Could a US political party gain complete control over the government by removing checks & balances?

Why do we use polarized capacitors?

What is GPS' 19 year rollover and does it present a cybersecurity issue?

If a centaur druid Wild Shapes into a Giant Elk, do their Charge features stack?

Is domain driven design an anti-SQL pattern?

Copycat chess is back

How to deal with fear of taking dependencies

Unbreakable Formation vs. Cry of the Carnarium

Where else does the Shulchan Aruch quote an authority by name?

Does bootstrapped regression allow for inference?

Is there a familial term for apples and pears?

"listening to me about as much as you're listening to this pole here"

Prime joint compound before latex paint?

Can I legally use front facing blue light in the UK?

Does a dangling wire really electrocute me if I'm standing in water?

Email Account under attack (really) - anything I can do?

LWC and complex parameters

Domain expired, GoDaddy holds it and is asking more money

What do you call something that goes against the spirit of the law, but is legal when interpreting the law to the letter?

Is ipsum/ipsa/ipse a third person pronoun, or can it serve other functions?

Is every set a filtered colimit of finite sets?

Add an angle to a sphere



Continuity at a point in terms of closure


Set Closure Union and IntersectionContinuity of a function through adherence of subsetsConvex set with empty interior is nowhere dense?Is preimage of closure equal to closure of preimage under continuous topological maps?How to show the logical equivalence of the following two definitions of continuity in a topological space?Given $A subseteq X$ in the discrete and the trivial topology, find closure of $A$Show two notions of dense are equivalentEquivalent definitions of continuity at a pointAbout continuity and clousureEquivalent definition of irreducible topological subspace.













4












$begingroup$


If $X$ and $Y$ are topological spaces, for $f:Xto Y$ to be continuous at $x_0in X$ it is necessary that $Asubseteq X land x_0inoverlineA implies f(x_0)inoverlinef(A)$.



I was wondering whether it is also sufficient. A proof or counterexample would be much appreciated!



Proof (necessity): Let $V$ be a neighborhood of $f(x_0)$. Since $f$ is continuous, $f^-1(V)$ is a neighborhood of $x_0$ in $X$. Since $x_0inoverlineA$, we have $Acap f^-1(V)neqvarnothing$. Let $xin Acap f^-1(V)$. Then $f(x)in f(A)cap V$, so that $f(A)cap Vneqvarnothing$; since this holds for any neighborhood $V$ of $f(x_0)$, we have $f(x_0)inoverlinef(A)$.










share|cite|improve this question









$endgroup$
















    4












    $begingroup$


    If $X$ and $Y$ are topological spaces, for $f:Xto Y$ to be continuous at $x_0in X$ it is necessary that $Asubseteq X land x_0inoverlineA implies f(x_0)inoverlinef(A)$.



    I was wondering whether it is also sufficient. A proof or counterexample would be much appreciated!



    Proof (necessity): Let $V$ be a neighborhood of $f(x_0)$. Since $f$ is continuous, $f^-1(V)$ is a neighborhood of $x_0$ in $X$. Since $x_0inoverlineA$, we have $Acap f^-1(V)neqvarnothing$. Let $xin Acap f^-1(V)$. Then $f(x)in f(A)cap V$, so that $f(A)cap Vneqvarnothing$; since this holds for any neighborhood $V$ of $f(x_0)$, we have $f(x_0)inoverlinef(A)$.










    share|cite|improve this question









    $endgroup$














      4












      4








      4





      $begingroup$


      If $X$ and $Y$ are topological spaces, for $f:Xto Y$ to be continuous at $x_0in X$ it is necessary that $Asubseteq X land x_0inoverlineA implies f(x_0)inoverlinef(A)$.



      I was wondering whether it is also sufficient. A proof or counterexample would be much appreciated!



      Proof (necessity): Let $V$ be a neighborhood of $f(x_0)$. Since $f$ is continuous, $f^-1(V)$ is a neighborhood of $x_0$ in $X$. Since $x_0inoverlineA$, we have $Acap f^-1(V)neqvarnothing$. Let $xin Acap f^-1(V)$. Then $f(x)in f(A)cap V$, so that $f(A)cap Vneqvarnothing$; since this holds for any neighborhood $V$ of $f(x_0)$, we have $f(x_0)inoverlinef(A)$.










      share|cite|improve this question









      $endgroup$




      If $X$ and $Y$ are topological spaces, for $f:Xto Y$ to be continuous at $x_0in X$ it is necessary that $Asubseteq X land x_0inoverlineA implies f(x_0)inoverlinef(A)$.



      I was wondering whether it is also sufficient. A proof or counterexample would be much appreciated!



      Proof (necessity): Let $V$ be a neighborhood of $f(x_0)$. Since $f$ is continuous, $f^-1(V)$ is a neighborhood of $x_0$ in $X$. Since $x_0inoverlineA$, we have $Acap f^-1(V)neqvarnothing$. Let $xin Acap f^-1(V)$. Then $f(x)in f(A)cap V$, so that $f(A)cap Vneqvarnothing$; since this holds for any neighborhood $V$ of $f(x_0)$, we have $f(x_0)inoverlinef(A)$.







      general-topology continuity






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked yesterday









      BlondCaféBlondCafé

      364




      364




















          2 Answers
          2






          active

          oldest

          votes


















          3












          $begingroup$

          Let $Vsubset Y$ be an open such that $f(x_0)in V$. If $x_0 in overlinef^-1(Ysetminus V)$, then $f(x_o)in overlinef(f^-1(Ysetminus V))subset overlineYsetminus V= Ysetminus V$, a contradiction, so $x_0 notin overlinef^-1(Ysetminus V)$. Then, if $U = Xsetminus overlinef^-1(Ysetminus V)$ is an open in $X$ such that $x_0in U$, and $f(U)subset V$, so $f$ is continuous in $x_0$.






          share|cite|improve this answer









          $endgroup$




















            2












            $begingroup$

            It's also sufficient: let $y=f(x_0)$ and $y in V$, $V$ open in $Y$.
            We want to find (for continuity at $x_0$) find some open neighbourhood $U$ of $x_0$ such that $f[U] subseteq V$.



            Suppose that this would fail, then for every neighbourhood $U$ of $x_0$ we would have $f[U] nsubseteq V$, or equivalently $U cap f^-1[Ysetminus V] neq emptyset$.



            It follows that then $x_0 in overlinef^-1[Ysetminus V]$ and so the assumption on $f$ would imply that $y=f(x_0) in overlinef[f^-1[Ysetminus V]]$. But $f[f^-1[B]] subseteq B$ for any $B$ so we'd deduce that $y in overlineYsetminus V = Ysetminus V$ which is nonsense. So contradiction and such a $U$ must exist.






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function ()
              return StackExchange.using("mathjaxEditing", function ()
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              );
              );
              , "mathjax-editing");

              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "69"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );













              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3178435%2fcontinuity-at-a-point-in-terms-of-closure%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              3












              $begingroup$

              Let $Vsubset Y$ be an open such that $f(x_0)in V$. If $x_0 in overlinef^-1(Ysetminus V)$, then $f(x_o)in overlinef(f^-1(Ysetminus V))subset overlineYsetminus V= Ysetminus V$, a contradiction, so $x_0 notin overlinef^-1(Ysetminus V)$. Then, if $U = Xsetminus overlinef^-1(Ysetminus V)$ is an open in $X$ such that $x_0in U$, and $f(U)subset V$, so $f$ is continuous in $x_0$.






              share|cite|improve this answer









              $endgroup$

















                3












                $begingroup$

                Let $Vsubset Y$ be an open such that $f(x_0)in V$. If $x_0 in overlinef^-1(Ysetminus V)$, then $f(x_o)in overlinef(f^-1(Ysetminus V))subset overlineYsetminus V= Ysetminus V$, a contradiction, so $x_0 notin overlinef^-1(Ysetminus V)$. Then, if $U = Xsetminus overlinef^-1(Ysetminus V)$ is an open in $X$ such that $x_0in U$, and $f(U)subset V$, so $f$ is continuous in $x_0$.






                share|cite|improve this answer









                $endgroup$















                  3












                  3








                  3





                  $begingroup$

                  Let $Vsubset Y$ be an open such that $f(x_0)in V$. If $x_0 in overlinef^-1(Ysetminus V)$, then $f(x_o)in overlinef(f^-1(Ysetminus V))subset overlineYsetminus V= Ysetminus V$, a contradiction, so $x_0 notin overlinef^-1(Ysetminus V)$. Then, if $U = Xsetminus overlinef^-1(Ysetminus V)$ is an open in $X$ such that $x_0in U$, and $f(U)subset V$, so $f$ is continuous in $x_0$.






                  share|cite|improve this answer









                  $endgroup$



                  Let $Vsubset Y$ be an open such that $f(x_0)in V$. If $x_0 in overlinef^-1(Ysetminus V)$, then $f(x_o)in overlinef(f^-1(Ysetminus V))subset overlineYsetminus V= Ysetminus V$, a contradiction, so $x_0 notin overlinef^-1(Ysetminus V)$. Then, if $U = Xsetminus overlinef^-1(Ysetminus V)$ is an open in $X$ such that $x_0in U$, and $f(U)subset V$, so $f$ is continuous in $x_0$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered yesterday









                  guchiheguchihe

                  21918




                  21918





















                      2












                      $begingroup$

                      It's also sufficient: let $y=f(x_0)$ and $y in V$, $V$ open in $Y$.
                      We want to find (for continuity at $x_0$) find some open neighbourhood $U$ of $x_0$ such that $f[U] subseteq V$.



                      Suppose that this would fail, then for every neighbourhood $U$ of $x_0$ we would have $f[U] nsubseteq V$, or equivalently $U cap f^-1[Ysetminus V] neq emptyset$.



                      It follows that then $x_0 in overlinef^-1[Ysetminus V]$ and so the assumption on $f$ would imply that $y=f(x_0) in overlinef[f^-1[Ysetminus V]]$. But $f[f^-1[B]] subseteq B$ for any $B$ so we'd deduce that $y in overlineYsetminus V = Ysetminus V$ which is nonsense. So contradiction and such a $U$ must exist.






                      share|cite|improve this answer









                      $endgroup$

















                        2












                        $begingroup$

                        It's also sufficient: let $y=f(x_0)$ and $y in V$, $V$ open in $Y$.
                        We want to find (for continuity at $x_0$) find some open neighbourhood $U$ of $x_0$ such that $f[U] subseteq V$.



                        Suppose that this would fail, then for every neighbourhood $U$ of $x_0$ we would have $f[U] nsubseteq V$, or equivalently $U cap f^-1[Ysetminus V] neq emptyset$.



                        It follows that then $x_0 in overlinef^-1[Ysetminus V]$ and so the assumption on $f$ would imply that $y=f(x_0) in overlinef[f^-1[Ysetminus V]]$. But $f[f^-1[B]] subseteq B$ for any $B$ so we'd deduce that $y in overlineYsetminus V = Ysetminus V$ which is nonsense. So contradiction and such a $U$ must exist.






                        share|cite|improve this answer









                        $endgroup$















                          2












                          2








                          2





                          $begingroup$

                          It's also sufficient: let $y=f(x_0)$ and $y in V$, $V$ open in $Y$.
                          We want to find (for continuity at $x_0$) find some open neighbourhood $U$ of $x_0$ such that $f[U] subseteq V$.



                          Suppose that this would fail, then for every neighbourhood $U$ of $x_0$ we would have $f[U] nsubseteq V$, or equivalently $U cap f^-1[Ysetminus V] neq emptyset$.



                          It follows that then $x_0 in overlinef^-1[Ysetminus V]$ and so the assumption on $f$ would imply that $y=f(x_0) in overlinef[f^-1[Ysetminus V]]$. But $f[f^-1[B]] subseteq B$ for any $B$ so we'd deduce that $y in overlineYsetminus V = Ysetminus V$ which is nonsense. So contradiction and such a $U$ must exist.






                          share|cite|improve this answer









                          $endgroup$



                          It's also sufficient: let $y=f(x_0)$ and $y in V$, $V$ open in $Y$.
                          We want to find (for continuity at $x_0$) find some open neighbourhood $U$ of $x_0$ such that $f[U] subseteq V$.



                          Suppose that this would fail, then for every neighbourhood $U$ of $x_0$ we would have $f[U] nsubseteq V$, or equivalently $U cap f^-1[Ysetminus V] neq emptyset$.



                          It follows that then $x_0 in overlinef^-1[Ysetminus V]$ and so the assumption on $f$ would imply that $y=f(x_0) in overlinef[f^-1[Ysetminus V]]$. But $f[f^-1[B]] subseteq B$ for any $B$ so we'd deduce that $y in overlineYsetminus V = Ysetminus V$ which is nonsense. So contradiction and such a $U$ must exist.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered yesterday









                          Henno BrandsmaHenno Brandsma

                          115k349125




                          115k349125



























                              draft saved

                              draft discarded
















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3178435%2fcontinuity-at-a-point-in-terms-of-closure%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Reverse int within the 32-bit signed integer range: [−2^31, 2^31 − 1]Combining two 32-bit integers into one 64-bit integerDetermine if an int is within rangeLossy packing 32 bit integer to 16 bitComputing the square root of a 64-bit integerKeeping integer addition within boundsSafe multiplication of two 64-bit signed integersLeetcode 10: Regular Expression MatchingSigned integer-to-ascii x86_64 assembler macroReverse the digits of an Integer“Add two numbers given in reverse order from a linked list”

                              Category:Fedor von Bock Media in category "Fedor von Bock"Navigation menuUpload mediaISNI: 0000 0000 5511 3417VIAF ID: 24712551GND ID: 119294796Library of Congress authority ID: n96068363BnF ID: 12534305fSUDOC authorities ID: 034604189Open Library ID: OL338253ANKCR AUT ID: jn19990000869National Library of Israel ID: 000514068National Thesaurus for Author Names ID: 341574317ReasonatorScholiaStatistics

                              Kiel Indholdsfortegnelse Historie | Transport og færgeforbindelser | Sejlsport og anden sport | Kultur | Kendte personer fra Kiel | Noter | Litteratur | Eksterne henvisninger | Navigationsmenuwww.kiel.de54°19′31″N 10°8′26″Ø / 54.32528°N 10.14056°Ø / 54.32528; 10.14056Oberbürgermeister Dr. Ulf Kämpferwww.statistik-nord.deDen danske Stats StatistikKiels hjemmesiderrrWorldCat312794080n790547494030481-4