Why CLRS example on residual networks does not follows its formula?Why is the complexity of negative-cycle-cancelling $O(V^2AUW)$?CLRS - Maxflow Augmented Flow Lemma 26.1 - don't understand use of def. in proofFord-Fulkerson algorithm clarificationLinear programming formulation of cheapest k-edge path between two nodesWhy is it that the flow value can increased along an augmenting path $p$ in a residual network?Maximum flow with Edmonds–Karp algorithmHow would one construct conjunctively local predicate of order k for checking if a shape is Convex?Equivalence of minimum cost circulation problem and minimum cost max flow problemGiven max-flow determine if edge is in a min-cutWhat is the intuition behind the way of reading off a dual optimal solution from simplex primal tabular in CLRS?

How can I add custom success page

How to move the player while also allowing forces to affect it

Unbreakable Formation vs. Cry of the Carnarium

Is "plugging out" electronic devices an American expression?

Why is my log file so massive? 22gb. I am running log backups

How is it possible for user's password to be changed after storage was encrypted? (on OS X, Android)

What do you call words made from common English words?

Does it makes sense to buy a new cycle to learn riding?

What do the Banks children have against barley water?

Does the average primeness of natural numbers tend to zero?

Re-submission of rejected manuscript without informing co-authors

"My colleague's body is amazing"

Copycat chess is back

Is it legal to have the "// (c) 2019 John Smith" header in all files when there are hundreds of contributors?

What does 'script /dev/null' do?

Is there a familial term for apples and pears?

Domain expired, GoDaddy holds it and is asking more money

Ideas for 3rd eye abilities

If a centaur druid Wild Shapes into a Giant Elk, do their Charge features stack?

What does "enim et" mean?

Is Social Media Science Fiction?

Is Fable (1996) connected in any way to the Fable franchise from Lionhead Studios?

Calculate Levenshtein distance between two strings in Python

Landlord wants to switch my lease to a "Land contract" to "get back at the city"



Why CLRS example on residual networks does not follows its formula?


Why is the complexity of negative-cycle-cancelling $O(V^2AUW)$?CLRS - Maxflow Augmented Flow Lemma 26.1 - don't understand use of def. in proofFord-Fulkerson algorithm clarificationLinear programming formulation of cheapest k-edge path between two nodesWhy is it that the flow value can increased along an augmenting path $p$ in a residual network?Maximum flow with Edmonds–Karp algorithmHow would one construct conjunctively local predicate of order k for checking if a shape is Convex?Equivalence of minimum cost circulation problem and minimum cost max flow problemGiven max-flow determine if edge is in a min-cutWhat is the intuition behind the way of reading off a dual optimal solution from simplex primal tabular in CLRS?













1












$begingroup$


I am learning algorithms to solve Maximum Flow problem by reading the CRLS book and confused by the following figure:



figure 26.4



That is:




A flow in a residual network provides a roadmap for adding flow to the
original flow network. If $f$ is a flow in $G$ and $f'$ is a flow in
the corresponding residual network $G_f$, we define $f uparrow f'$,
the augmentation of flow $f$ by $f'$, to be a function from $V times V$ to
$R$, defined by



$$(f uparrow f')(u, v) = begincases f(u,v) + f'(u, v) - f'(v, u) &
> textif (u,v) $in$ E \ 0 & textotherwise endcases$$




How the flow network in (c), for example $(s, v_2)$ got the flow 12 ?
If we follow the formula, it must have a flow 5:
$8 + 5 - 8 = 5$










share|cite|improve this question









$endgroup$
















    1












    $begingroup$


    I am learning algorithms to solve Maximum Flow problem by reading the CRLS book and confused by the following figure:



    figure 26.4



    That is:




    A flow in a residual network provides a roadmap for adding flow to the
    original flow network. If $f$ is a flow in $G$ and $f'$ is a flow in
    the corresponding residual network $G_f$, we define $f uparrow f'$,
    the augmentation of flow $f$ by $f'$, to be a function from $V times V$ to
    $R$, defined by



    $$(f uparrow f')(u, v) = begincases f(u,v) + f'(u, v) - f'(v, u) &
    > textif (u,v) $in$ E \ 0 & textotherwise endcases$$




    How the flow network in (c), for example $(s, v_2)$ got the flow 12 ?
    If we follow the formula, it must have a flow 5:
    $8 + 5 - 8 = 5$










    share|cite|improve this question









    $endgroup$














      1












      1








      1





      $begingroup$


      I am learning algorithms to solve Maximum Flow problem by reading the CRLS book and confused by the following figure:



      figure 26.4



      That is:




      A flow in a residual network provides a roadmap for adding flow to the
      original flow network. If $f$ is a flow in $G$ and $f'$ is a flow in
      the corresponding residual network $G_f$, we define $f uparrow f'$,
      the augmentation of flow $f$ by $f'$, to be a function from $V times V$ to
      $R$, defined by



      $$(f uparrow f')(u, v) = begincases f(u,v) + f'(u, v) - f'(v, u) &
      > textif (u,v) $in$ E \ 0 & textotherwise endcases$$




      How the flow network in (c), for example $(s, v_2)$ got the flow 12 ?
      If we follow the formula, it must have a flow 5:
      $8 + 5 - 8 = 5$










      share|cite|improve this question









      $endgroup$




      I am learning algorithms to solve Maximum Flow problem by reading the CRLS book and confused by the following figure:



      figure 26.4



      That is:




      A flow in a residual network provides a roadmap for adding flow to the
      original flow network. If $f$ is a flow in $G$ and $f'$ is a flow in
      the corresponding residual network $G_f$, we define $f uparrow f'$,
      the augmentation of flow $f$ by $f'$, to be a function from $V times V$ to
      $R$, defined by



      $$(f uparrow f')(u, v) = begincases f(u,v) + f'(u, v) - f'(v, u) &
      > textif (u,v) $in$ E \ 0 & textotherwise endcases$$




      How the flow network in (c), for example $(s, v_2)$ got the flow 12 ?
      If we follow the formula, it must have a flow 5:
      $8 + 5 - 8 = 5$







      algorithms network-flow






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked yesterday









      maksadbekmaksadbek

      1185




      1185




















          2 Answers
          2






          active

          oldest

          votes


















          4












          $begingroup$

          That's not what the formula gives you. As the caption says, the capacity of the augmenting path in the residual network in (b) is $4$. Therefore we send 4 units of flow along the augmenting path from $s$ to $t$, namely, the path $s to v_2 to v_3 to t$. In particular, $f(s,v_2)=8$, $f'(s,v_2)=4$, and $f'(v_2,s)=0$, so the updated flow is $8+4-0=12$.






          share|cite|improve this answer









          $endgroup$




















            3












            $begingroup$

            It is explained in part (b) of the caption of Figure 26.4.




            The residual network $G_f$ with augmenting path $p$ shaded; its residual capacity is $c_f(p)=c_f(v_2,v_3)=4$.




            Since the capacity of path $p$ is 4 (not 5), we find a flow $f'$ in the residual network $G_f$ that is defined by $f'(s,v_2)=f'(v_2,v_3)=f'(v_3,t)=4$. So for the network flow $fuparrow f'$ in (c), we have
            $$ (fuparrow f')(v_2, v_3)=f(v_2,v_3)+f'(v_2,v_3) = 8+4=12.$$






            share|cite|improve this answer











            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function ()
              return StackExchange.using("mathjaxEditing", function ()
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              );
              );
              , "mathjax-editing");

              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "419"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: false,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: null,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );













              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f106608%2fwhy-clrs-example-on-residual-networks-does-not-follows-its-formula%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              4












              $begingroup$

              That's not what the formula gives you. As the caption says, the capacity of the augmenting path in the residual network in (b) is $4$. Therefore we send 4 units of flow along the augmenting path from $s$ to $t$, namely, the path $s to v_2 to v_3 to t$. In particular, $f(s,v_2)=8$, $f'(s,v_2)=4$, and $f'(v_2,s)=0$, so the updated flow is $8+4-0=12$.






              share|cite|improve this answer









              $endgroup$

















                4












                $begingroup$

                That's not what the formula gives you. As the caption says, the capacity of the augmenting path in the residual network in (b) is $4$. Therefore we send 4 units of flow along the augmenting path from $s$ to $t$, namely, the path $s to v_2 to v_3 to t$. In particular, $f(s,v_2)=8$, $f'(s,v_2)=4$, and $f'(v_2,s)=0$, so the updated flow is $8+4-0=12$.






                share|cite|improve this answer









                $endgroup$















                  4












                  4








                  4





                  $begingroup$

                  That's not what the formula gives you. As the caption says, the capacity of the augmenting path in the residual network in (b) is $4$. Therefore we send 4 units of flow along the augmenting path from $s$ to $t$, namely, the path $s to v_2 to v_3 to t$. In particular, $f(s,v_2)=8$, $f'(s,v_2)=4$, and $f'(v_2,s)=0$, so the updated flow is $8+4-0=12$.






                  share|cite|improve this answer









                  $endgroup$



                  That's not what the formula gives you. As the caption says, the capacity of the augmenting path in the residual network in (b) is $4$. Therefore we send 4 units of flow along the augmenting path from $s$ to $t$, namely, the path $s to v_2 to v_3 to t$. In particular, $f(s,v_2)=8$, $f'(s,v_2)=4$, and $f'(v_2,s)=0$, so the updated flow is $8+4-0=12$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered yesterday









                  D.W.D.W.

                  103k12129294




                  103k12129294





















                      3












                      $begingroup$

                      It is explained in part (b) of the caption of Figure 26.4.




                      The residual network $G_f$ with augmenting path $p$ shaded; its residual capacity is $c_f(p)=c_f(v_2,v_3)=4$.




                      Since the capacity of path $p$ is 4 (not 5), we find a flow $f'$ in the residual network $G_f$ that is defined by $f'(s,v_2)=f'(v_2,v_3)=f'(v_3,t)=4$. So for the network flow $fuparrow f'$ in (c), we have
                      $$ (fuparrow f')(v_2, v_3)=f(v_2,v_3)+f'(v_2,v_3) = 8+4=12.$$






                      share|cite|improve this answer











                      $endgroup$

















                        3












                        $begingroup$

                        It is explained in part (b) of the caption of Figure 26.4.




                        The residual network $G_f$ with augmenting path $p$ shaded; its residual capacity is $c_f(p)=c_f(v_2,v_3)=4$.




                        Since the capacity of path $p$ is 4 (not 5), we find a flow $f'$ in the residual network $G_f$ that is defined by $f'(s,v_2)=f'(v_2,v_3)=f'(v_3,t)=4$. So for the network flow $fuparrow f'$ in (c), we have
                        $$ (fuparrow f')(v_2, v_3)=f(v_2,v_3)+f'(v_2,v_3) = 8+4=12.$$






                        share|cite|improve this answer











                        $endgroup$















                          3












                          3








                          3





                          $begingroup$

                          It is explained in part (b) of the caption of Figure 26.4.




                          The residual network $G_f$ with augmenting path $p$ shaded; its residual capacity is $c_f(p)=c_f(v_2,v_3)=4$.




                          Since the capacity of path $p$ is 4 (not 5), we find a flow $f'$ in the residual network $G_f$ that is defined by $f'(s,v_2)=f'(v_2,v_3)=f'(v_3,t)=4$. So for the network flow $fuparrow f'$ in (c), we have
                          $$ (fuparrow f')(v_2, v_3)=f(v_2,v_3)+f'(v_2,v_3) = 8+4=12.$$






                          share|cite|improve this answer











                          $endgroup$



                          It is explained in part (b) of the caption of Figure 26.4.




                          The residual network $G_f$ with augmenting path $p$ shaded; its residual capacity is $c_f(p)=c_f(v_2,v_3)=4$.




                          Since the capacity of path $p$ is 4 (not 5), we find a flow $f'$ in the residual network $G_f$ that is defined by $f'(s,v_2)=f'(v_2,v_3)=f'(v_3,t)=4$. So for the network flow $fuparrow f'$ in (c), we have
                          $$ (fuparrow f')(v_2, v_3)=f(v_2,v_3)+f'(v_2,v_3) = 8+4=12.$$







                          share|cite|improve this answer














                          share|cite|improve this answer



                          share|cite|improve this answer








                          edited yesterday

























                          answered yesterday









                          Apass.JackApass.Jack

                          14k1940




                          14k1940



























                              draft saved

                              draft discarded
















































                              Thanks for contributing an answer to Computer Science Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f106608%2fwhy-clrs-example-on-residual-networks-does-not-follows-its-formula%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Reverse int within the 32-bit signed integer range: [−2^31, 2^31 − 1]Combining two 32-bit integers into one 64-bit integerDetermine if an int is within rangeLossy packing 32 bit integer to 16 bitComputing the square root of a 64-bit integerKeeping integer addition within boundsSafe multiplication of two 64-bit signed integersLeetcode 10: Regular Expression MatchingSigned integer-to-ascii x86_64 assembler macroReverse the digits of an Integer“Add two numbers given in reverse order from a linked list”

                              Category:Fedor von Bock Media in category "Fedor von Bock"Navigation menuUpload mediaISNI: 0000 0000 5511 3417VIAF ID: 24712551GND ID: 119294796Library of Congress authority ID: n96068363BnF ID: 12534305fSUDOC authorities ID: 034604189Open Library ID: OL338253ANKCR AUT ID: jn19990000869National Library of Israel ID: 000514068National Thesaurus for Author Names ID: 341574317ReasonatorScholiaStatistics

                              Kiel Indholdsfortegnelse Historie | Transport og færgeforbindelser | Sejlsport og anden sport | Kultur | Kendte personer fra Kiel | Noter | Litteratur | Eksterne henvisninger | Navigationsmenuwww.kiel.de54°19′31″N 10°8′26″Ø / 54.32528°N 10.14056°Ø / 54.32528; 10.14056Oberbürgermeister Dr. Ulf Kämpferwww.statistik-nord.deDen danske Stats StatistikKiels hjemmesiderrrWorldCat312794080n790547494030481-4